We’ve spent some twenty years in the world of enterprise computing. We’ve seen many things change in languages, architectures, platforms, and processes. But through all this time one thing has stayed constant—relational databases store the data. There have been challengers, some of which have had success in some niches, but on the whole the data storage question for architects has been the question of which relational database to use.

There is a lot of value in the stability of this reign. An organization’s data lasts much longer that its programs (at least that’s what people tell us—we’ve seen plenty of very old programs out there). It’s valuable to have a stable data storage that’s well understood and accessible from many application programming platforms.

Now, however, there’s a new challenger on the block under the confrontational tag of NoSQL. It’s born out of a need to handle larger data volumes which forced a fundamental shift to building large hardware platforms through clusters of commodity servers. This need has also raised long-running concerns about the difficulties of making application code play well with the relational data model.

The term “NoSQL” is very ill-defined. It’s generally applied to a number of recent nonrelational databases such as Cassandra, Mongo, Neo4J, and Riak. They embrace schemaless data, run on clusters, and have the ability to trade off traditional consistency for other useful properties. Advocates of NoSQL databases claim that they can build systems that are more performant, scale much better, and are easier to program with.

Is this the first rattle of the death knell for relational databases, or yet another pretender to the throne? Our answer to that is “neither.” Relational databases are a powerful tool that we expect to be using for many more decades, but we do see a profound change in that relational databases won’t be the only databases in use. Our view is that we are entering a world of Polyglot Persistence where enterprises, and even individual applications, use multiple technologies for data management. As a result, architects will need to be familiar with these technologies and be able to evaluate which ones to use for differing needs.
Had we not thought that, we wouldn’t have spent the time and effort writing this book.

This book seeks to give you enough information to answer the question of whether NoSQL databases are worth serious consideration for your future projects. Every project is different, and there’s no way we can write a simple decision tree to choose the right data store. Instead, what we are attempting here is to provide you with enough background on how NoSQL databases work, so that you can make those judgments yourself without having to trawl the whole web. We’ve deliberately made this a small book, so you can get this overview pretty quickly. It won’t answer your questions definitively, but it should narrow down the range of options you have to consider and help you understand what questions you need to ask.

Why Are NoSQL Databases Interesting?

We see two primary reasons why people consider using a NoSQL database.

- **Application development productivity.** A lot of application development effort is spent on mapping data between in-memory data structures and a relational database. A NoSQL database may provide a data model that better fits the application’s needs, thus simplifying that interaction and resulting in less code to write, debug, and evolve.

- **Large-scale data.** Organizations are finding it valuable to capture more data and process it more quickly. They are finding it expensive, if even possible, to do so with relational databases. The primary reason is that a relational database is designed to run on a single machine, but it is usually more economic to run large data and computing loads on clusters of many smaller and cheaper machines. Many NoSQL databases are designed explicitly to run on clusters, so they make a better fit for big data scenarios.

What’s in the Book

We’ve broken this book up into two parts. The first part concentrates on core concepts that we think you need to know in order to judge whether NoSQL databases are relevant for you and how they differ. In the second part we concentrate more on implementing systems with NoSQL databases.
Chapter 1 begins by explaining why NoSQL has had such a rapid rise—the need to process larger data volumes led to a shift, in large systems, from scaling vertically to scaling horizontally on clusters. This explains an important feature of the data model of many NoSQL databases—the explicit storage of a rich structure of closely related data that is accessed as a unit. In this book we call this kind of structure an *aggregate*.

Chapter 2 describes how aggregates manifest themselves in three of the main data models in NoSQL land: key-value (“Key-Value and Document Data Models,” p. 20), document (“Key-Value and Document Data Models,” p. 20), and column family (“Column-Family Stores,” p. 21) databases. Aggregates provide a natural unit of interaction for many kinds of applications, which both improves running on a cluster and makes it easier to program the data access. Chapter 3 shifts to the downside of aggregates—the difficulty of handling relationships (“Relationships,” p. 25) between entities in different aggregates. This leads us naturally to graph databases (“Graph Databases,” p. 26), a NoSQL data model that doesn’t fit into the aggregate-oriented camp. We also look at the common characteristic of NoSQL databases that operate without a schema (“Schemaless Databases,” p. 28)—a feature that provides some greater flexibility, but not as much as you might first think.

Having covered the data-modeling aspect of NoSQL, we move on to distribution: Chapter 4 describes how databases distribute data to run on clusters. This breaks down into sharding (“Sharding,” p. 38) and replication, the latter being either master-slave (“Master-Slave Replication,” p. 40) or peer-to-peer (“Peer-to-Peer Replication,” p. 42) replication. With the distribution models defined, we can then move on to the issue of consistency. NoSQL databases provide a more varied range of consistency options than relational databases—which is a consequence of being friendly to clusters. So Chapter 5 talks about how consistency changes for updates (“Update Consistency,” p. 47) and reads (“Read Consistency,” p. 49), the role of quorums (“Quorums,” p. 57), and how even some durability (“Relaxing Durability,” p. 56) can be traded off. If you’ve heard anything about NoSQL, you’ll almost certainly have heard of the CAP theorem; the “The CAP Theorem” section on p. 53 explains what it is and how it fits in.

While these chapters concentrate primarily on the principles of how data gets distributed and kept consistent, the next two chapters talk about a couple of important tools that make this work. Chapter 6 describes version stamps, which are for keeping track of changes and detecting inconsistencies. Chapter 7 outlines map-reduce, which is a particular way of organizing parallel computation that fits in well with clusters and thus with NoSQL systems.

Once we’re done with concepts, we move to implementation issues by looking at some example databases under the four key categories: Chapter 8 uses Riak
as an example of key-value databases, Chapter 9 takes MongoDB as an example for document databases, Chapter 10 chooses Cassandra to explore column-family databases, and finally Chapter 11 plucks Neo4J as an example of graph databases. We must stress that this is not a comprehensive study—there are too many out there to write about, let alone for us to try. Nor does our choice of examples imply any recommendations. Our aim here is to give you a feel for the variety of stores that exist and for how different database technologies use the concepts we outlined earlier. You’ll see what kind of code you need to write to program against these systems and get a glimpse of the mindset you’ll need to use them.

A common statement about NoSQL databases is that since they have no schema, there is no difficulty in changing the structure of data during the life of an application. We disagree—a schemaless database still has an implicit schema that needs change discipline when you implement it, so Chapter 12 explains how to do data migration both for strong schemas and for schemaless systems.

All of this should make it clear that NoSQL is not a single thing, nor is it something that will replace relational databases. Chapter 13 looks at this future world of Polyglot Persistence, where multiple data-storage worlds coexist, even within the same application. Chapter 14 then expands our horizons beyond this book, considering other technologies that we haven’t covered that may also be a part of this polyglot-persistent world.

With all of this information, you are finally at a point where you can make a choice of what data storage technologies to use, so our final chapter (Chapter 15, “Choosing Your Database,” p. 147) offers some advice on how to think about these choices. In our view, there are two key factors—finding a productive programming model where the data storage model is well aligned to your application, and ensuring that you can get the data access performance and resilience you need. Since this is early days in the NoSQL life story, we’re afraid that we don’t have a well-defined procedure to follow, and you’ll need to test your options in the context of your needs.

This is a brief overview—we’ve been very deliberate in limiting the size of this book. We’ve selected the information we think is the most important—so that you don’t have to. If you are going to seriously investigate these technologies, you’ll need to go further than what we cover here, but we hope this book provides a good context to start you on your way.

We also need to stress that this is a very volatile field of the computer industry. Important aspects of these stores are changing every year—new features, new databases. We’ve made a strong effort to focus on concepts, which we think will be valuable to understand even as the underlying technology changes. We’re pretty confident that most of what we say will have this longevity, but absolutely sure that not all of it will.
Who Should Read This Book

Our target audience for this book is people who are considering using some form of a NoSQL database. This may be for a new project, or because they are hitting barriers that are suggesting a shift on an existing project.

Our aim is to give you enough information to know whether NoSQL technology makes sense for your needs, and if so which tool to explore in more depth. Our primary imagined audience is an architect or technical lead, but we think this book is also valuable for people involved in software management who want to get an overview of this new technology. We also think that if you’re a developer who wants an overview of this technology, this book will be a good starting point.

We don’t go into the details of programming and deploying specific databases here—we leave that for specialist books. We’ve also been very firm on a page limit, to keep this book a brief introduction. This is the kind of book we think you should be able to read on a plane flight: It won’t answer all your questions but should give you a good set of questions to ask.

If you’ve already delved into the world of NoSQL, this book probably won’t commit any new items to your store of knowledge. However, it may still be useful by helping you explain what you’ve learned to others. Making sense of the issues around NoSQL is important—particularly if you’re trying to persuade someone to consider using NoSQL in a project.

What Are the Databases

In this book, we’ve followed a common approach of categorizing NoSQL databases according to their data model. Here is a table of the four data models and some of the databases that fit each model. This is not a comprehensive list—it only mentions the more common databases we’ve come across. At the time of writing, you can find more comprehensive lists at http://nosql-database.org and http://nosql.mypopescu.com/kb/nosql. For each category, we mark with italics the database we use as an example in the relevant chapter.

Our goal is to pick a representative tool from each of the categories of the databases. While we talk about specific examples, most of the discussion should apply to the entire category, even though these products are unique and cannot be generalized as such. We will pick one database for each of the key-value, document, column family, and graph databases; where appropriate, we will mention other products that may fulfill a specific feature need.
This classification by data model is useful, but crude. The lines between the different data models, such as the distinction between key-value and document databases (“Key-Value and Document Data Models,” p. 20), are often blurry. Many databases don’t fit cleanly into categories; for example, OrientDB calls itself both a document database and a graph database.

Acknowledgments

Our first thanks go to our colleagues at ThoughtWorks, many of whom have been applying NoSQL to our delivery projects over the last couple of years. Their experiences have been a primary source both of our motivation in writing this book and of practical information on the value of this technology. The positive
experience we’ve had so far with NoSQL data stores is the basis of our view that this is an important technology and a significant shift in data storage.

We’d also like to thank various groups who have given public talks, published articles, and blogs on their use of NoSQL. Much progress in software development gets hidden when people don’t share with their peers what they’ve learned. Particular thanks here go to Google and Amazon whose papers on Bigtable and Dynamo were very influential in getting the NoSQL movement going. We also thank companies that have sponsored and contributed to the open-source development of NoSQL databases. An interesting difference with previous shifts in data storage is the degree to which the NoSQL movement is rooted in open-source work.

Particular thanks go to ThoughtWorks for giving us the time to work on this book. We joined ThoughtWorks at around the same time and have been here for over a decade. ThoughtWorks continues to be a very hospitable home for us, a source of knowledge and practice, and a welcome environment of openly sharing what we learn—so different from the traditional systems delivery organizations.

Bethany Anders-Beck, Ilias Bartolini, Tim Berglund, Duncan Craig, Paul Duvall, Oren Eini, Perryn Fowler, Michael Hunger, Eric Kascic, Joshua Kerievsky, Anand Krishnaswamy, Bobby Norton, Ade Oshineye, Thiyagu Palanisamy, Prasanna Pendse, Dan Pritchett, David Rice, Mike Roberts, Marko Rodriquez, Andrew Slocum, Toby Tripp, Steve Vinoski, Dean Wampler, Jim Webber, and Wee Witthawaskul reviewed early drafts of this book and helped us improve it with their advice.

Additionally, Pramod would like to thank Schaumburg Library for providing great service and quiet space for writing; Arhana and Arula, my beautiful daughters, for their understanding that daddy would go to the library and not take them along; Rupali, my beloved wife, for her immense support and help in keeping me focused.
This page intentionally left blank
Chapter 13

Polyglot Persistence

Different databases are designed to solve different problems. Using a single database engine for all of the requirements usually leads to non-performant solutions; storing transactional data, caching session information, traversing graph of customers and the products their friends bought are essentially different problems. Even in the RDBMS space, the requirements of an OLAP and OLTP system are very different—nonetheless, they are often forced into the same schema.

Let’s think of data relationships. RDBMS solutions are good at enforcing that relationships exist. If we want to discover relationships, or have to find data from different tables that belong to the same object, then the use of RDBMS starts being difficult.

Database engines are designed to perform certain operations on certain data structures and data amounts very well—such as operating on sets of data or a store and retrieving keys and their values really fast, or storing rich documents or complex graphs of information.

13.1 Disparate Data Storage Needs

Many enterprises tend to use the same database engine to store business transactions, session management data, and for other storage needs such as reporting, BI, data warehousing, or logging information (Figure 13.1).

The session, shopping cart, or order data do not need the same properties of availability, consistency, or backup requirements. Does session management storage need the same rigorous backup/recovery strategy as the e-commerce orders data? Does the session management storage need more availability of an instance of database engine to write/read session data?

In 2006, Neal Ford coined the term polyglot programming, to express the idea that applications should be written in a mix of languages to take advantage
of the fact that different languages are suitable for tackling different problems. Complex applications combine different types of problems, so picking the right language for each job may be more productive than trying to fit all aspects into a single language.

Similarly, when working on an e-commerce business problem, using a data store for the shopping cart which is highly available and can scale is important, but the same data store cannot help you find products bought by the customers’ friends—which is a totally different question. We use the term polyglot persistence to define this hybrid approach to persistence.

13.2 Polyglot Data Store Usage

Let’s take our e-commerce example and use the polyglot persistence approach to see how some of these data stores can be applied (Figure 13.2). A key-value data store could be used to store the shopping cart data before the order is confirmed by the customer and also store the session data so that the RDBMS is not used for this transient data. Key-value stores make sense here since the shopping cart is usually accessed by user ID and, once confirmed and paid by the customer, can be saved in the RDBMS. Similarly, session data is keyed by the session ID.

If we need to recommend products to customers when they place products into their shopping carts—for example, “your friends also bought these products”
or “your friends bought these accessories for this product”—then introducing a graph data store in the mix becomes relevant (Figure 13.3).

It is not necessary for the application to use a single data store for all of its needs, since different databases are built for different purposes and not all problems can be elegantly solved by a single database.

Even using specialized relational databases for different purposes, such as data warehousing appliances or analytics appliances within the same application, can be viewed as polyglot persistence.
13.3 Service Usage over Direct Data Store Usage

As we move towards multiple data stores in the application, there may be other applications in the enterprise that could benefit from the use of our data stores or the data stored in them. Using our example, the graph data store can serve data to other applications that need to understand, for example, which products are being bought by a certain segment of the customer base.

Instead of each application talking independently to the graph database, we can wrap the graph database into a service so that all relationships between the nodes can be saved in one place and queried by all the applications (Figure 13.4). The data ownership and the APIs provided by the service are more useful than a single application talking to multiple databases.

![Diagram showing data stores and services](image)

Figure 13.4 Example implementation of wrapping data stores into services

The philosophy of service wrapping can be taken further: You could wrap all databases into services, letting the application to only talk to a bunch of services (Figure 13.5). This allows for the databases inside the services to evolve without you having to change the dependent applications.

Many NoSQL data store products, such as Riak [Riak] and Neo4J [Neo4J], actually provide out-of-the-box REST API’s.

13.4 Expanding for Better Functionality

Often, we cannot really change the data storage for a specific usage to something different, because of the existing legacy applications and their dependency on
existing data storage. We can, however, add functionality such as caching for better performance, or use indexing engines such as Solr [Solr] so that search can be more efficient (Figure 13.6). When technologies like this are introduced, we have to make sure data is synchronized between the data storage for the application and the cache or indexing engine.

Figure 13.5 Using services instead of talking to databases

Figure 13.6 Using supplemental storage to enhance legacy storage
While doing this, we need to update the indexed data as the data in the application database changes. The process of updating the data can be real-time or batch, as long as we ensure that the application can deal with stale data in the index/search engine. The event sourcing (“Event Sourcing,” p. 142) pattern can be used to update the index.

13.5 Choosing the Right Technology

There is a rich choice of data storage solutions. Initially, the pendulum had shifted from specialty databases to a single RDBMS database which allows all types of data models to be stored, although with some abstraction. The trend is now shifting back to using the data storage that supports the implementation of solutions natively.

If we want to recommend products to customers based on what’s in their shopping carts and which other products were bought by customers who bought those products, it can be implemented in any of the data stores by persisting the data with the correct attributes to answer our questions. The trick is to use the right technology, so that when the questions change, they can still be asked with the same data store without losing existing data or changing it into new formats.

Let’s go back to our new feature need. We can use RDBMS to solve this using a hierarchal query and modeling the tables accordingly. When we need to change the traversal, we will have to refactor the database, migrate the data, and start persisting new data. Instead, if we had used a data store that tracks relations between nodes, we could have just programmed the new relations and keep using the same data store with minimal changes.

13.6 Enterprise Concerns with Polyglot Persistence

Introduction of NoSQL data storage technologies will force the enterprise DBAs to think about how to use the new storage. The enterprise is used to having uniform RDBMS environments; whatever is the database an enterprise starts using first, chances are that over the years all its applications will be built around the same database. In this new world of polyglot persistence, the DBA groups will have to become more poly-skilled—to learn how some of these NoSQL technologies work, how to monitor these systems, back them up, and take data out of and put into these systems.

Once the enterprise decides to use any NoSQL technology, issues such as licensing, support, tools, upgrades, drivers, auditing, and security come up. Many
NoSQL technologies are open-source and have an active community of supporters; also, there are companies that provide commercial support. There is not a rich ecosystem of tools, but the tool vendors and the open-source community are catching up, releasing tools such as MongoDB Monitoring Service [Monitoring], Datastax Ops Center [OpsCenter], or Rekon browser for Riak [Rekon].

One other area that enterprises are concerned about is security of the data—the ability to create users and assign privileges to see or not see data at the database level. Most of the NoSQL databases do not have very robust security features, but that’s because they are designed to operate differently. In traditional RDBMS, data was served by the database and we could get to the database using any query tools. With the NoSQL databases, there are query tools as well but the idea is for the application to own the data and serve it using services. With this approach, the responsibility for the security lies with the application. Having said that, there are NoSQL technologies that introduce security features.

Enterprises often have data warehouse systems, BI, and analytics systems that may need data from the polyglot data sources. Enterprises will have to ensure that the ETL tools or any other mechanism they are using to move data from source systems to the data warehouse can read data from the NoSQL data store. The ETL tool vendors are coming out with have the ability to talk to NoSQL databases; for example, Pentaho [Pentaho] can talk to MongoDB and Cassandra.

Every enterprise runs analytics of some sort. As the sheer volume of data that needs to be captured increases, enterprises are struggling to scale their RDBMS systems to write all this data to the databases. A huge number of writes and the need to scale for writes are a great use case for NoSQL databases that allow you to write large volumes of data.

13.7 Deployment Complexity

Once we start down the path of using polyglot persistence in the application, deployment complexity needs careful consideration. The application now needs all databases in production at the same time. You will need to have these databases in your UAT, QA, and Dev environments. As most of the NoSQL products are open-source, there are few license cost ramifications. They also support automation of installation and configuration. For example, to install a database, all that needs to be done is download and unzip the archive, which can be automated using curl and unzip commands. These products also have sensible defaults and can be started with minimum configuration.
13.8 Key Points

- Polyglot persistence is about using different data storage technologies to handle varying data storage needs.
- Polyglot persistence can apply across an enterprise or within a single application.
- Encapsulating data access into services reduces the impact of data storage choices on other parts of a system.
- Adding more data storage technologies increases complexity in programming and operations, so the advantages of a good data storage fit need to be weighed against this complexity.
Index

A
ACID (Atomic, Consistent, Isolated, and Durable) transactions, 19
in column-family databases, 109
in graph databases, 28, 50, 114–115
in relational databases, 10, 26
vs. BASE, 56
ad banners, 108–109
aggregate-oriented databases, 14, 19–23, 147
atomic updates in, 50, 61
disadvantages of, 30
no ACID transactions in, 50
performance of, 149
vs. graph databases, 28
aggregates, 14–23
changing structure of, 98, 132
modeling, 31
real-time analytics with, 33
updating, 26
agile methods, 123
Amazon, 9
See also DynamoDB, SimpleDB
analytics
counting website visitors for, 108
of historic information, 144
real-time, 33, 98
Apache Pig language, 76
Apache ZooKeeper library, 104, 115
application databases, 7, 146
updating materialized views in, 31
arcs (graph databases). See edges
atomic cross-document operations, 98
atomic rebalancing, 58
atomic transactions, 92, 104
atomic updates, 50, 61
automated failovers, 94
automated merges, 48
automated rollbacks, 145
auto-sharding, 39
availability, 53
in column-family databases, 104–105
in document databases, 93
in graph databases, 115
vs. consistency, 54
See also CAP theorem
averages, calculating, 72
B
backward compatibility, 126, 131
BASE (Basically Available, Soft state, Eventual consistency), 56
Berkeley DB, 81
BigTable DB, 9, 21–22
bit-mapped indexes, 106
blogging, 108
Blueprints property graph, 115
Brewer, Eric, 53
Brewer’s Conjecture. See CAP theorem
buckets (Riak), 82
default values for consistency for, 84
domain, 83
storing all data together in, 82
business transactions, 61
C
caching
performance of, 39, 137
stale data in, 50
Cages library, 104
CAP (Consistency, Availability, and Partition tolerance) theorem, 53–56
for document databases, 93
for Riak, 86
CAS (compare-and-set) operations, 62
Cassandra DB, 10, 21–22, 99–109
availability in, 104–105
column families in:
 commands for, 105–106
 standard, 101
 super, 101–102
columns in, 100
 expiring, 108–109
 indexing, 106–107
 reading, 107
 super, 101
compaction in, 103
consistency in, 103–104
ETL tools for, 139
hinted handoff in, 104
keyspaces in, 102–104
memtables in, 103
queries in, 105–107
repairs in, 103–104
replication factor in, 103
scaling in, 107
SSTables in, 103
timestamps in, 100
transactions in, 104
wide/skinny rows in, 23
clients, processing on, 67
Clojure language, 145
cloud computing, 149
clumping, 39
clusters, 8–10, 67–72, 76, 149
 in file systems, 8
 in Riak, 87
resiliency of, 8
column-family databases, 21–23, 99–109
 ACID transactions in, 109
 columns for materialized views in, 31
 combining peer-to-peer replication and sharding in, 43–44
 consistency in, 103–104
 modeling for, 34
 performance in, 103
 schemalessness of, 28
 vs. key-value databases, 21
 wide/skinny rows in, 23
 combinable reducers, 70–71
compaction (Cassandra), 103
compatibility, backward, 126, 131
concurrency, 145
 in file systems, 141
 in relational databases, 4
 offline, 62
conditional updates, 48, 62–63
conflicts
 key, 82
 read-write, 49–50
 resolving, 64
 write-write, 47–48, 64
consistency, 47–59
 eventual, 50, 84
 in column-family databases, 103–104
 in graph databases, 114
 in master-slave replication, 52
 in MongoDB, 91
 logical, 50
 optimistic/pessimistic, 48
 read, 49–52, 56
 read-your-writes, 52
 relaxing, 52–56
 replication, 50
 session, 52, 63
 trading off, 57
 update, 47, 56, 61
 vs. availability, 54
 write, 92
See also CAP theorem
content hashes, 62–63
couchDB, 10, 91
 conditional updates in, 63
 replica sets in, 94
counters, for version stamps, 62–63
CQL (Cassandra Query Language), 10, 106
CQRS (Command Query Responsibility Segregation), 143
cross-document operations, 98
C-Store DB, 21
Cypher language, 115–119

D
Data Mapper and Repository pattern, 151
data models, 13, 25
 aggregate-oriented, 14–23, 30
 document, 20
 key-value, 20
 relational, 13–14
data redundancy, 94

databases
 choosing, 7, 147–152
 deploying, 139
 encapsulating in explicit layer, 151
 NoSQL, definition of, 10–11
 shared integration of, 4, 6
Datastax Ops Center, 139
DBDeploy framework, 125
DBMaintain tool, 126
deadlocks, 48
demo access, 108
Dependency Network pattern, 77
deployment complexity, 139
Dijkstra’s algorithm, 118
disaster recovery, 94
distributed file systems, 76, 141
distributed version control systems, 48
 version stamps in, 64
distribution models, 37–43
 See also replications, sharding, single server approach
document databases, 20, 23, 89–98
 availability in, 93
 embedding child documents into, 90
 indexes in, 25
 master-slave replication in, 93
 performance in, 91
 queries in, 25, 94–95
 replica sets in, 94
 scaling in, 95
 schemalessness of, 28, 98
 XML support in, 146
domain buckets (Riak), 83
Domain-Driven Design, 14
DTDs (Document Type Definitions), 146
durability, 56–57
DynamoDB, 9, 81, 100
 shopping carts in, 55
Dynamite DB, 10

E
early prototypes, 109
e-commerce
 data modeling for, 14
 flexible schemas for, 98
 polyglot persistence of, 133–138
 shopping carts in, 55, 85, 87
edges (graph databases), 26, 111
eligibility rules, 26

enterprises
 commercial support of NoSQL for, 138–139
 concurrency in, 4
 DB as backing store for, 4
 event logging in, 97
 integration in, 4
 polyglot persistence in, 138–139
 security of data in, 139
 error handling, 4, 145
etags, 62
ETL tools, 139
Evans, Eric, 10
event logging, 97, 107–108
event sourcing, 138, 142, 144
eventual consistency, 50
 in Riak, 84
expiring usage, 108–109

F
failovers, automated, 94
file systems, 141
 as backing store for RDBMS, 3
 cluster-aware, 8
 concurrency in, 141
 distributed, 76, 141
 performance of, 141
 queries in, 141
FlockDB, 113
 data model of, 27
 node distribution in, 115

G
Gilbert, Seth, 53
Google, 9
 Google BigTable. See BigTable
 Google File System, 141
graph databases, 26–28, 111–121, 148
 ACID transactions in, 28, 50, 114–115
 aggregate-ignorance of, 19
 availability in, 115
 consistency in, 114
 creating, 113
 edges (arcs) in, 26, 111
 held entirely in memory, 119
 master-slave replication in, 115
 migrations in, 131
 modeling for, 35
 nodes in, 26, 111–117
 performance of, 149
graph databases (continued)
 properties in, 111
 queries in, 115–119
 relationships in, 111–121
 scaling in, 119
 schemalessness of, 28
 single server configuration of, 38
 traversing, 111–117
 vs. aggregate databases, 28
 vs. relational databases, 27, 112
 wrapping into service, 136
Gremlin language, 115
GUID (Globally Unique Identifier), 62

H
 Hadoop project, 67, 76, 141
 HamsterDB, 81
 hash tables, 62–63, 81
 HBase DB, 10, 21–22, 99–100
 Hector client, 105
 Hibernate framework, 5, 147
 hinted handoff, 104
 hive DB, 76
 hot backup, 40, 42
 hotel booking, 4, 55
 HTTP (Hypertext Transfer Protocol), 7
 interfaces based on, 85
 updating with, 62
 Hypertable DB, 10, 99–100

I
 iBATIS, 5, 147
 impedance mismatch, 5, 12
 inconsistency
 in shopping carts, 55
 of reads, 49
 of updates, 56
 window of, 50–51, 56
 indexes
 bit-mapped, 106
 in document databases, 25
 stale data in, 138
 updating, 138
 Infinite Graph DB, 113
 data model of, 27
 node distribution in, 114–115
 initial tech spikes, 109
 integration databases, 11
 interoperability, 7

J
 JSON (JavaScript Object Notation), 7, 94–95, 146

K
 keys (key-value databases)
 composite, 74
 conflicts of, 82
 designing, 85
 expiring, 85
 grouping into partitions, 70
 keyspace (Cassandra), 102–104
 key-value databases, 20, 23, 81–88
 consistency of, 83–84
 modeling for, 31–33
 no multiple key operations in, 88
 schemalessness of, 28
 sharding in, 86
 structure of values in, 86
 transactions in, 84, 88
 vs. column-family databases, 21
 XML support in, 146

L
 Liquibase tool, 126
 location-based services, 120
 locks
 dead, 48
 offline, 52
 lost updates, 47
 Lotus DB, 91
 Lucene library, 85, 88, 116
 Lynch, Nancy, 53

M
 MapReduce framework, 67
 map-reduce pattern, 67–77
 calculations with, 72
 incremental, 31, 76–77
 maps in, 68
 materialized views in, 76
 partitions in, 70
 reusing intermediate outputs in, 76
 stages for, 73–76
 master-slave replication, 40–42
 appointing masters in, 41, 57
 combining with sharding, 43
 consistency of, 52
 in document databases, 93
in graph databases, 115
version stamps in, 63
materialized views, 30
in map-reduce, 76
updating, 31
Memcached DB, 81, 87
memory images, 144–145
memtables (Cassandra), 103
merges, automated, 48
Microsoft SQL Server, 8
migrations, 123–132
during development, 124, 126
in graph databases, 131
in legacy projects, 126–128
in object-oriented databases, 146
in schemaless databases, 128–132
incremental, 130
transition phase of, 126–128
mobile apps, 131
MongoDB, 10, 91–97
collections in, 91
consistency in, 91
databases in, 91
ETL tools for, 139
queries in, 94–95
replica sets in, 91, 93, 96
schema migrations in, 128–131
sharding in, 96
slaveOk parameter in, 91–92, 96
terminology in, 89
WriteConcern parameter in, 92
MongoDB Monitoring Service, 139
MyBatis Migrator tool, 126
MySQL DB, 53, 119
N
Neo4J DB, 113–118
ACID transactions in, 114–115
availability in, 115
creating graphs in, 113
data model of, 27
replicated slaves in, 115
service wrapping in, 136
nodes (graph databases), 26, 111
distributed storage for, 114
finding paths between, 117
indexing properties of, 115–116
nonuniform data, 10, 28, 30
NoSQL databases
advantages of, 12
definition of, 10–11
lack of support for transactions in, 10, 61
running of clusters, 10
schemalessness of, 10
O
object-oriented databases, 5, 146
migrations in, 146
vs. relational databases, 6
offline concurrency, 62
offline locks, 52
Optimistic Offline Lock, 62
Oracle DB
redo log in, 104
terminology in, 81, 89
Oracle RAC DB, 8
OrientDB, 91, 113
ORM (Object-Relational Mapping)
frameworks, 5–6, 147
Oskarsson, Johan, 9
P
partition tolerance, 53–54
See also CAP theorem
partitioning, 69–70
peer-to-peer replication, 42–43
durability of, 58
inconsistency of, 43
version stamps in, 63–64
Pentaho tool, 139
performance
and sharding, 39
and transactions, 53
binary protocols for, 7
caching for, 39, 137
data-access, 149–150
in aggregate-oriented databases, 149
in column-family databases, 103
in document databases, 91
in graph databases, 149
responsiveness of, 48
tests for, 149
pipes-and-filters approach, 73
polyglot persistence, 11, 133–139, 148
and deployment complexity, 139
in enterprises, 138–139
polyglot programming, 133–134
processing, on clients/servers, 67
programmer productivity, 147–149
purchase orders, 25
queries
against varying aggregate structure, 98
by data, 88, 94
by key, 84–86
for files, 141
in column-family databases, 105–107
in document databases, 25, 94–95
in graph databases, 115–119
precomputed and cached, 31
via views, 94
quorums, 57, 59
read, 58
write, 58, 84
R
Rails Active Record framework, 147
RavenDB, 91
atomic cross-document operations in, 98
replica sets in, 94
transactions in, 92
RDBMS. See relational databases
reads
consistency of, 49–52, 56, 58
horizontal scaling for, 94, 96
inconsistent, 49
multiple nodes for, 143
performance of, 52
quorums of, 58
repairs of, 103
resilience of, 40–41
separating from writes, 41
stale, 56
read-write conflicts, 49–50
read-your-writes consistency, 52
Real Time Analytics, 33
Real Time BI, 33
rebalancing, atomic, 58
recommendation engines, 26, 35, 121, 138
Redis DB, 81–83
redo log, 104
reduce functions, 69
combinable, 70–71
regions. See map-reduce pattern, partitions
in
Rekon browser for Riak, 139
relational databases (RDBMS), 13, 17
advantages of, 3–5, 7–8, 150
aggregate-ignorance of, 19
backing store in, 3
clustered, 8
columns in, 13, 90
concurrency in, 4
defining schemas for, 28
impedance mismatch in, 5, 12
licensing costs of, 8
main memory in, 3
modifying multiple records at once in, 26
partitions in, 96
persistence in, 3
relations (tables) in, 5, 13
schemas for, 29–30, 123–128
security in, 7
sharding in, 8
simplicity of relationships in, 112
strong consistency of, 47
terminology in, 81, 89
transactions in, 4, 26, 92
tuples (rows) in, 5, 13–14
views in, 30
vs. graph databases, 27, 112
vs. object-oriented databases, 6
XML support in, 146
relationships, 25, 111–121
dangling, 114
direction of, 113, 116, 118
in RDBMS, 112
properties of, 113–115
traversing, 111–117
RelaxNG, 146
replica sets, 91, 93, 96
replication factor, 58
in column-family databases, 103
in Riak, 84
replications, 37
combining with sharding, 43
consistency of, 42, 50
durability of, 57
over clusters, 149
performance of, 39
version stamps in, 63–64
See also master-slave replication,
peer-to-peer replication
resilience
and sharding, 39
read, 40–41
responsiveness, 48
Riak DB, 81–83
clusters in, 87
controlling CAP in, 86
eventual consistency in, 84
HTTP-based interface of, 85
link-walking in, 25
partial retrieval in, 25
replication factor in, 84
service wrapping in, 136
terminology in, 81
transactions in, 84
write tolerance of, 84
Riak Search, 85, 88
rich domain model, 113
rollback, automated, 145
routing, 120
rows (RDBMS). See tuples

S
scaffolding code, 126
scaling, 95
horizontal, 149
for reads, 94, 96
for writes, 96
in column-family databases, 107
in document databases, 95
in graph databases, 119
vertical, 8
Scatter-Gather pattern, 67
schemaless databases, 28–30, 148
implicit schema of, 29
schema changes in, 128–132
schemas
backward compatibility of, 126, 131
changing, 128–132
during development, 124, 126
implicit, 29
migrations of, 123–132
search engines, 138
security, 139
servers
maintenance of, 94
processing on, 67
service-oriented architecture, 7
services, 136
and security, 139
decomposing database layer into, 151
decoupling between databases and, 7
over HTTP, 7
sessions
affinity, 52
consistency of, 52, 63
expire keys for, 85
management of, 133
sticky, 52
storing, 57, 87
sharding, 37–38, 40, 149
and performance, 39
and resilience, 39
auto, 39
by customer location, 97
combining with replication, 43
in key-value databases, 86
in MongoDB, 96
in relational databases, 8
shared database integration, 4, 6
shopping carts
expire keys for, 85
inconsistency in, 55
persistence of, 133
storing, 87
shuffling, 70
SimpleDB, 99
inconsistency window of, 50
single server approach, 37–38
consistency of, 53
no partition tolerance in, 54
transactions in, 53
version stamps in, 63
single-threaded event processors, 145
snapshots, 142–143
social networks, 26, 120
relationships between nodes in, 117
Solr indexing engine, 88, 137, 141
split brain situation, 53
SQL (Structured Query Language), 5
SSTables (Cassandra), 103
stale data
in cache, 50
in indexes/search engines, 138
reading, 56
standard column families (Cassandra), 101
sticky sessions, 52
storage models, 13
Strozzi, Carlo, 9
super column families (Cassandra), 101–102
super columns (Cassandra), 101
system transactions, 61

T
tables. See relational databases, relations in
telemetric data from physical devices, 57
Terrastore DB, 91, 94
timestamps
consistent notion of time for, 64
in column-family databases, 100
of last update, 63
transactional memory systems, 145
transactions, 50
ACID, 10, 19, 26, 28, 50, 56, 109, 114–115
across multiple operations, 92
and performance, 53
atomic, 92, 104
business, 61
in graph databases, 28, 114–115
in key-value databases, 84, 88
in RDBMS, 4, 26, 92
in single server systems, 53
lack of support in NoSQL for, 10, 61
multioperation, 88
open during user interaction, 52
rolling back, 4
system, 61
tree structures, 117
triggers, 126
TTL (Time To Live), 108–109
tuples (RDBMS), 5, 13–14

U
updates
atomic, 50, 61
conditional, 48, 62–63
consistency of, 47, 56, 61
lost, 47
merging, 48
timestamps of, 63–64
user comments, 98
user preferences, 87
user profiles, 87, 98
user registrations, 98
user sessions, 57

V
vector clock, 64
version control systems, 126, 145
distributed, 48, 64
version stamps, 52, 61–64
version vector, 64
views, 126
virtual columns, 126
Voldemort DB, 10, 82

W
web services, 7
websites
 distributing pages for, 39
 on large clusters, 149
 publishing, 98
 visitor counters for, 108
word processors, 3
write tolerance, 84
writes, 64
 atomic, 104
 conflicts of, 47–48
 consistency of, 92
 horizontal scaling for, 96
 performance of, 91
 quorums of, 58
 separating from reads, 41
 serializing, 47

X
XML (Extensible Markup Language), 7, 146
XML databases, 145–146
XML Schema language, 146
XPath language, 146
XQuery language, 146
XSLT (Extensible Stylesheet Language Transformations), 146

Z
ZooKeeper. See Apache ZooKeeper