Visit the following websites to learn more about this book:

SDC Publications amazon.com Google books BARNES&NOBLE
Chapter 4
Model History Tree

Learning Objectives

♦ Understand Feature Interactions
♦ Use the Part Browser
♦ Modify and Update Feature Dimensions
♦ Perform History-Based Part Modifications
♦ Change the Names of Created Features
♦ Implement Basic Design Changes
Autodesk Inventor Certified User Exam Objectives Coverage

Parametric Modeling Basics:
- History Tree ...4-3
- Symmetric Option ..4-8
- Select Other ..4-9
- Renaming the 3D Model ..4-12
- Update ..4-13
- History-Based Part Modifications4-17
- Edit Feature ..4-17
- Physical Properties ...4-21
- Center of Gravity ...4-22

Section 3: Sketches
Objectives: Creating 2D Sketches, Draw Tools, Sketch Constraints, Pattern Sketches, Modify Sketches, Format Sketches, Sketch Doctor, Shared Sketches, Sketch Parameters.
- Show Dimensions ..4-13
- Concentric ..4-14
- Edit Sketch ..4-18
- Look At ..4-18

Section 4: Parts
- Browser ..4-6
- Base Feature ..4-6
- Symmetric Option ..4-8
- Local Update ..4-13
- Creating a Placed Feature ..4-14
- Hole Tool ..4-14
- To Next Option ..4-16
Introduction

In Autodesk Inventor, the design intents are embedded into features in the history tree. The structure of the model history tree resembles that of a CSG binary tree. A CSG binary tree contains only Boolean relations, while the Autodesk Inventor history tree contains all features, including Boolean relations. A history tree is a sequential record of the features used to create the part. This history tree contains the construction steps, plus the rules defining the design intent of each construction operation. In a history tree, each time a new modeling event is created previously defined features can be used to define information such as size, location, and orientation. It is therefore important to think about your modeling strategy before you start creating anything. It is important, but also difficult, to plan ahead for all possible design changes that might occur. This approach in modeling is a major difference of FEATURE-BASED CAD SOFTWARE, such as Autodesk Inventor, from previous generation CAD systems.

Feature-based parametric modeling is a cumulative process. Every time a new feature is added, a new result is created and the feature is also added to the history tree. The database also includes parameters of features that were used to define them. All of this happens automatically as features are created and manipulated. At this point, it is important to understand that all of this information is retained, and modifications are done based on the same input information.

In Autodesk Inventor, the history tree gives information about modeling order and other information about the feature. Part modifications can be accomplished by accessing the features in the history tree. It is therefore important to understand and utilize the feature history tree to modify designs. Autodesk Inventor remembers the history of a part, including all the rules that were used to create it, so that changes can be made to any operation that was performed to create the part. In Autodesk Inventor, to modify a feature we access the feature by selecting the feature in the browser window.
The Saddle Bracket Design

Based on your knowledge of Autodesk Inventor so far, how many features would you use to create the design? Which feature would you choose as the BASE FEATURE, the first solid feature, of the model? What is your choice in arranging the order of the features? Would you organize the features differently if additional fillets were to be added in the design? Take a few minutes to consider these questions and do preliminary planning by sketching on a piece of paper. You are also encouraged to create the model on your own prior to following through the tutorial.

Starting Autodesk Inventor

1. Select the Autodesk Inventor option on the Start menu or select the Autodesk Inventor icon on the desktop to start Autodesk Inventor. The Autodesk Inventor main window will appear on the screen.

2. Once the program is loaded into memory, select the New File icon with a single click of the left-mouse-button in the Launch toolbar.

4. Click Create in the New File dialog box to accept the selected settings to start a new model.
Modeling Strategy
The Autodesk Inventor Browser

- In the Autodesk Inventor screen layout, the browser is located to the left of the graphics window. Autodesk Inventor can be used for part modeling, assembly modeling, part drawings, and assembly presentation. The browser window provides a visual structure of the features, constraints, and attributes that are used to create the part, assembly, or scene. The browser also provides right-click menu access for tasks associated specifically with the part or feature, and it is the primary focus for executing many of the Autodesk Inventor commands.

- The first item displayed in the browser is the name of the part, which is also the file name. By default, the name “Part1” is used when we first started Autodesk Inventor. The browser can also be used to modify parts and assemblies by moving, deleting, or renaming items within the hierarchy. Any changes made in the browser directly affect the part or assembly and the results of the modifications are displayed on the screen instantly. The browser also reports any problems and conflicts during the modification and updating procedure.

Creating the Base Feature

1. Move the graphics cursor to the Start 2D Sketch icon in the Sketch toolbar under the 3D Model tab. A Help-tip box appears next to the cursor and a brief description of the command is displayed at the bottom of the drawing screen.

2. Move the cursor over the edge of the XY Plane in the graphics area. When the XY Plane is highlighted, click once with the left-mouse-button to select the Plane as the sketch plane for the new sketch.
3. Select the **Line** icon by clicking once with the left-mouse-button; this will activate the **Line** command.

4. On your own, create and adjust the geometry by adding and modifying dimensions as shown below.

![Geometry Diagram]

5. Inside the graphics window, click once with the right-mouse-button to display the option menu. Select **Finish 2D Sketch** in the pop-up menu to end the **Sketch** option.

6. On your own, use the dynamic viewing functions to view the sketch. Click the home view icon to change the display to the **isometric** view.

7. In the **Sketch toolbar** under the **3D Model tab**, select the **Extrude** command by left-clicking on the icon.
8. In the *Distance* option box, enter **2.5** as the total extrusion distance.

9. In the *Extrude* pop-up window, left-click once on the **Symmetric** icon. The **Symmetric** option allows us to extrude in both directions of the sketched profile.

10. Click on the **OK** button to accept the settings and create the base feature.

➢ On your own, use the *Dynamic Viewing* functions to view the 3D model. Also notice the extrusion feature is added to the *Model Tree* in the *browser* area.
Adding the Second Solid Feature

1. In the Sketch toolbar under the 3D Model tab select the Start 2D Sketch command by left-clicking once on the icon.

2. In the Status Bar area, the message “Select plane to create sketch or an existing sketch to edit.” is displayed. Move the graphics cursor on the 3D part and notice that Autodesk Inventor will automatically highlight feasible planes and surfaces as the cursor is on top of the different surfaces. Move the cursor inside the upper horizontal face of the 3D object as shown below.

3. Click once with the right-mouse-button to bring up the option menu and choose Select Other to switch to the next feasible choice.

4. On your own, click on the down arrow to examine all possible surface selections.

5. Select the bottom horizontal face of the solid model when it is highlighted as shown in the above figure.
Creating a 2D Sketch

1. Select the **Center Point Circle** command by clicking once with the left-mouse-button on the icon in the **Sketch** tab.

 ➢ We will align the center of the circle to the midpoint of the base feature.

2. On your own, use the snap to midpoint option to pick the midpoint of the edge when the midpoint is displayed with GREEN color as shown in the figure. (Hit [F6] to set the display orientation if necessary.)

3. Select the front corner of the base feature to create a circle as shown below.

4. Inside the graphics window, click once with the right-mouse-button to display the option menu. Select **OK** in the pop-up menu to end the **Circle** command.
5. Inside the graphics window, click once with the right-mouse-button to display the option menu. Select **Finish 2D Sketch** in the pop-up menu to end the Sketch option.

6. In the **Features** toolbar (the toolbar that is located to the left side of the graphics window), select the **Extrude** command by clicking the left-mouse-button on the icon.

7. Click inside the circle we just created and left-click once to select the region as the profile to be extruded.

8. In the **Extrude** pop-up control, set the operation option to **Join**.

9. Also set the Extents option to **To Selected Face** as shown below.

10. Select the top face of the base feature as the termination surface for the extrusion.

11. Click on the OK button to proceed with the Join operation.
Renaming the Part Features

Currently, our model contains two extruded features. The feature is highlighted in the display area when we select the feature in the browser window. Each time a new feature is created, the feature is also displayed in the Model Tree window. By default, Autodesk Inventor will use generic names for part features. However, when we begin to deal with parts with a large number of features, it will be much easier to identify the features using more meaningful names. Two methods can be used to rename the features: 1. **Clicking** twice on the name of the feature and 2. Using the **Properties** option. In this example, the use of the first method is illustrated.

1. Select the first extruded feature in the **model browser** area by left-clicking once on the name of the feature, **Extrusion1**. Notice the selected feature is highlighted in the graphics window.

2. Left-click again on the feature name to enter the **Edit** mode as shown.

3. Enter **Base** as the new name for the first extruded feature.

4. On your own, rename the second extruded feature to **Circular_End**.
Adjusting the Width of the Base Feature

One of the main advantages of parametric modeling is the ease of performing part modifications at any time in the design process. Part modifications can be done through accessing the features in the history tree. Autodesk Inventor remembers the history of a part, including all the rules that were used to create it, so that changes can be made to any operation that was performed to create the part. For our Saddle Bracket design, we will reduce the size of the base feature from 3.25 inches to 3.0 inches, and the extrusion distance to 2.0 inches.

1. Select the first extruded feature, Base, in the browser area. Notice the selected feature is highlighted in the graphics window.

2. Inside the browser area, right-mouse-click on the first extruded feature to bring up the option menu and select the Show Dimensions option in the pop-up menu.

3. All dimensions used to create the Base feature are displayed on the screen. Select the overall width of the Base feature, the 3.25 dimension value, by double-clicking on the dimension text as shown.

4. Enter 3.0 in the Edit Dimension window.

5. On your own, repeat the above steps and modify the extruded distance from 2.5 to 2.0.

6. Click Local Update in the Quick Access Toolbar.

 Note that Autodesk Inventor updates the model by re-linking all elements used to create the model. Any problems or conflicts that occur will also be displayed during the updating process.
Adding a Placed Feature

1. In the Sketch tab, select the **Hole** command by left-clicking on the icon.

2. In the **Hole** dialog box, choose **Concentric** in the placement option as shown.

3. Pick the **bottom plane** of the solid model as the placement plane as shown.

4. Pick the **bottom arc** to use as the *concentric* reference.

5. Set the hole diameter to **0.75 in** as shown.
6. Set the termination option to **Through All** as shown.

7. Click **OK** to accept the settings and create the **Hole** feature.
Creating a Rectangular Cut Feature

1. In the Sketch toolbar under the 3D Model tab select the Start 2D Sketch command by left-clicking once on the icon.

2. Pick the vertical face of the solid as shown. (Note the alignment of the origin of the sketch plane.)

- On your own, create a rectangular cut (1.0 x 0.75) feature (To Next option) as shown and rename the feature to Rect_Cut.
History-Based Part Modifications

Autodesk Inventor uses the *history-based part modification* approach, which enables us to make modifications to the appropriate features and re-link the rest of the history tree without having to reconstruct the model from scratch. We can think of it as going back in time and modifying some aspects of the modeling steps used to create the part. We can modify any feature that we have created. As an example, we will adjust the depth of the rectangular cutout.

1. In the *browser* window, select the last cut feature, **Rect_Cut**, by left-clicking once on the name of the feature.

2. In the *browser* window, right-click once on the **Rect_Cut** feature.

3. Select **Edit Feature** in the pop-up menu. Notice the *Extrude* dialog box appears on the screen.

4. In the *Extrude* dialog box, set the termination *Extents* to the **Through All** option.

5. Click on the **OK** button to accept the settings.

- As can been seen, the history-based modification approach is very straightforward and it only took a few seconds to adjust the cut feature to the **Through All** option.
A Design Change

Engineering designs usually go through many revisions and changes. Autodesk Inventor provides an assortment of tools to handle design changes quickly and effectively. We will demonstrate some of the tools available by changing the Base feature of the design.

1. In the browser window, select the Base feature by left-clicking once on the name of the feature.

2. In the browser, right-click once on the Base feature to bring up the option menu; then pick Edit Sketch in the pop-up menu.

3. Click Home to reset the display to Isometric.

Autodesk Inventor will now display the original 2D sketch of the selected feature in the graphics window. We have literally gone back to the point where we first created the 2D sketch. Notice the feature being modified is also highlighted in the desktop browser.

4. Click on the Look At icon in the Standard toolbar area.
 - The Look At command automatically aligns the sketch plane of a selected entity to the screen.

5. Select any line segment of the 2D sketch to reset the display to align to the 2D sketch.
6. Select the **Fillet** command in the 2D Sketch toolbar.

7. In the graphics window, enter **0.25** as the new radius of the fillet.

8. Select the two edges as shown to create the fillet.

- Note that the fillet is created automatically with the dimension attached. The attached dimension can also be modified through the history tree.

9. Click on the [X] icon in the 2D Fillet window to end the Fillet command.

10. Select **Finish Sketch** in the Ribbon toolbar to end the Sketch option.
In a typical design process, the initial design will undergo many analyses, testing, and reviews. The *history-based part modification* approach is an extremely powerful tool that enables us to quickly update the design. At the same time, it is quite clear that PLANNING AHEAD is also important in doing feature-based modeling.

11. In the *Standard* toolbar, click **Save** and save the model as *Saddle_Bracket.ipt*. (On your own, create the Chapter4 folder.)
Assigning and Calculating the Associated Physical Properties

Autodesk Inventor models have properties called iProperties. The iProperties can be used to create reports and update assembly bills of materials, drawing parts lists, and other information. With iProperties, we can also set and calculate physical properties for a part or assembly using the material library. This allows us to examine the physical properties of the model, such as weight or center of gravity.

1. In the browser, right-click once on the part name to bring up the option menu; then pick iProperties in the pop-up menu.

2. On your own, look at the different information listed in the iProperties dialog box.

3. Click on the Physical tab; this is the page that contains the physical properties of the selected model.

- Note that the Material option is not assigned, and none of the physical properties are shown.

4. Click the down-arrow in the Material option to display the material list, and select Aluminum-6061 as shown.
5. Click on the **Global** button to display the *Mass Moments Inertial* of the design.

6. On your own, select **Cast Iron** as the *Material* type and compare the differences in using the different materials.

- Also note the *Material* can be assigned through the quick access menu as shown.
Review Questions: (Time: 30 minutes.)

1. What are stored in the Autodesk Inventor History Tree?

2. When extruding, what is the difference between Distance and Through All?

3. Describe the history-based part modification approach.

4. What determines how a model reacts when other features in the model change?

5. Describe the steps to rename existing features.

6. Describe two methods available in Autodesk Inventor to modify the dimension values of parametric sketches.

7. Create History Tree sketches showing the steps you plan to use to create the two models shown on the next page:

Ex.1)

Ex.2)
Exercises: Create and save the exercises in the Chapter4 folder. (Time: 180 minutes.)

1. C-Clip (Dimensions are in inches. Plate thickness: 0.25 inches.)

2. Tube Mount (Dimensions are in inches.)
3. **Hanger Jaw** (Dimensions are in inches. Volume =\?)

4. **Transfer Fork** (Dimensions are in inches. Material: **Cast Iron**. Volume =\?)
5. **Guide Slider** (Material: **Cast Iron**, Weight and Volume =?)

![Guide Slider Diagram]

![Shaft Guide Diagram]
Parametric Modeling with Autodesk® Inventor® 2018

Randy H. Shih

NEW Contains a new chapter on 3D printing
Visit the following websites to learn more about this book:

- SDC Publications
- amazon.com
- Google books
- BARNES&NOBLE
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Autodesk Inventor Certified User Examination Overview</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Getting Started</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>Development of Computer Geometric Modeling</td>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>Feature-Based Parametric Modeling</td>
<td>1-7</td>
<td></td>
</tr>
<tr>
<td>Getting Started with Autodesk Inventor</td>
<td>1-8</td>
<td></td>
</tr>
<tr>
<td>The Screen Layout and Getting Started Toolbar</td>
<td>1-9</td>
<td></td>
</tr>
<tr>
<td>The New File Dialog Box and Units Setup</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>The Default Autodesk Inventor Screen Layout</td>
<td>1-11</td>
<td></td>
</tr>
<tr>
<td>File Menu</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>Quick Access Toolbar</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>Ribbon Tabs and Tool Panels</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>Online Help Panel</td>
<td>1-12</td>
<td></td>
</tr>
<tr>
<td>3D Model Toolbar</td>
<td>1-13</td>
<td></td>
</tr>
<tr>
<td>Graphics Window</td>
<td>1-13</td>
<td></td>
</tr>
<tr>
<td>Message and Status Bar</td>
<td>1-13</td>
<td></td>
</tr>
<tr>
<td>Mouse Buttons</td>
<td>1-14</td>
<td></td>
</tr>
<tr>
<td>[Esc] - Canceling Commands</td>
<td>1-14</td>
<td></td>
</tr>
<tr>
<td>Autodesk Inventor Help System</td>
<td>1-15</td>
<td></td>
</tr>
<tr>
<td>Data Management Using Inventor Project files</td>
<td>1-16</td>
<td></td>
</tr>
<tr>
<td>Setup of a New Inventor Project</td>
<td>1-17</td>
<td></td>
</tr>
<tr>
<td>The Content of an Inventor Project File</td>
<td>1-20</td>
<td></td>
</tr>
<tr>
<td>Leaving Autodesk Inventor</td>
<td>1-20</td>
<td></td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Parametric Modeling Fundamentals</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>The Adjuster Design</td>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>Starting Autodesk Inventor</td>
<td>2-4</td>
<td></td>
</tr>
<tr>
<td>The Default Autodesk Inventor Screen Layout</td>
<td>2-6</td>
<td></td>
</tr>
<tr>
<td>Sketch Plane – It is an XY Monitor, but an XYZ World</td>
<td>2-7</td>
<td></td>
</tr>
<tr>
<td>Creating Rough Sketches</td>
<td>2-9</td>
<td></td>
</tr>
<tr>
<td>Step 1: Creating a Rough Sketch</td>
<td>2-10</td>
<td></td>
</tr>
<tr>
<td>Graphics Cursors</td>
<td>2-10</td>
<td></td>
</tr>
<tr>
<td>Geometric Constraint Symbols</td>
<td>2-11</td>
<td></td>
</tr>
<tr>
<td>Step 2: Apply/Modify Constraints and Dimensions</td>
<td>2-12</td>
<td></td>
</tr>
<tr>
<td>Dynamic Viewing Functions – Zoom and Pan</td>
<td>2-15</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 3
Constructive Solid Geometry Concepts

Introduction 3-3
Binary Tree 3-4
The Locator Design 3-5
Modeling Strategy - CSG Binary Tree 3-6
Starting Autodesk Inventor 3-7
Base Feature 3-8
GRID Display Setup 3-9
Model Dimensions Format 3-12
Modifying the Dimensions of the Sketch 3-12
Repositioning Dimensions 3-13
Using the Measure Tools 3-14
Completing the Base Solid Feature 3-17
Creating the Next Solid Feature 3-18
Creating a Cut Feature 3-22
Creating a Placed Feature 3-25
Creating a Rectangular Cut Feature 3-27
Save the Model 3-29
Review Questions 3-30
Exercises 3-31

Chapter 4
Model History Tree

Introduction 4-3
The Saddle Bracket Design 4-4
Starting Autodesk Inventor 4-4
Modeling Strategy 4-5
The Autodesk Inventor Browser 4-6
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Parametric Constraints Fundamentals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints and Relations</td>
<td>5-3</td>
</tr>
<tr>
<td>Create a Simple Triangular Plate Design</td>
<td>5-3</td>
</tr>
<tr>
<td>Fully Constrained Geometry</td>
<td>5-4</td>
</tr>
<tr>
<td>Starting Autodesk Inventor</td>
<td>5-4</td>
</tr>
<tr>
<td>Displaying Existing Constraints</td>
<td>5-5</td>
</tr>
<tr>
<td>Applying Geometric/Dimensional Constraints</td>
<td>5-7</td>
</tr>
<tr>
<td>Over-Constraining and Driven Dimensions</td>
<td>5-11</td>
</tr>
<tr>
<td>Deleting Existing Constraints</td>
<td>5-12</td>
</tr>
<tr>
<td>Using the Auto Dimension Command</td>
<td>5-13</td>
</tr>
<tr>
<td>Constraint and Sketch Settings</td>
<td>5-18</td>
</tr>
<tr>
<td>Parametric Relations</td>
<td>5-19</td>
</tr>
<tr>
<td>Dimensional Values and Dimensional Variables</td>
<td>5-21</td>
</tr>
<tr>
<td>Parametric Equations</td>
<td>5-22</td>
</tr>
<tr>
<td>Viewing the Established Parameters and Relations</td>
<td>5-24</td>
</tr>
<tr>
<td>Saving the Model File</td>
<td>5-25</td>
</tr>
<tr>
<td>Using the Measure Tools</td>
<td>5-26</td>
</tr>
<tr>
<td>Review Questions</td>
<td>5-30</td>
</tr>
<tr>
<td>Exercises</td>
<td>5-31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Geometric Construction Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>6-3</td>
</tr>
<tr>
<td>The Gasket Design</td>
<td>6-3</td>
</tr>
<tr>
<td>Modeling Strategy</td>
<td>6-4</td>
</tr>
<tr>
<td>Starting Autodesk Inventor</td>
<td>6-5</td>
</tr>
<tr>
<td>Create a 2D Sketch</td>
<td>6-6</td>
</tr>
<tr>
<td>Edit the Sketch by Dragging the Sketched Entities</td>
<td>6-8</td>
</tr>
<tr>
<td>Add Additional Constraints</td>
<td>6-10</td>
</tr>
<tr>
<td>Use the Trim and Extend Commands</td>
<td>6-11</td>
</tr>
<tr>
<td>The Auto Dimension Command</td>
<td>6-13</td>
</tr>
</tbody>
</table>
Create Fillets and Completing the Sketch 6-15
Fully Constrained Geometry 6-16
Profile Sketch 6-18
Redefine the Sketch and Profile 6-19
Create an Offset Cut Feature 6-23
Review Questions 6-26
Exercises 6-27

Chapter 7
Parent/Child Relationships and the BORN Technique

Introduction 7-3
The BORN Technique 7-3
The U-Bracket Design 7-4
Sketch Plane Settings 7-5
Apply the BORN Technique 7-6
Create the 2D Sketch of the Base Feature 7-8
Create the First Extrude Feature 7-11
The Implied Parent/Child Relationships 7-12
Create the Second Solid Feature 7-12
Create a Cut Feature 7-16
The Second Cut Feature 7-17
Examine the Parent/Child Relationships 7-19
Modify a Parent Dimension 7-20
A Design Change 7-21
Feature Suppression 7-22
A Different Approach to the Center_Drill Feature 7-23
Suppress the Rect_Cut Feature 7-25
Create a Circular Cut Feature 7-26
A Flexible Design Approach 7-28
View and Edit Material Properties 7-29
Review Questions 7-31
Exercises 7-32

Chapter 8
Part Drawings and 3D Model-Based Definition

Drawings from Parts and Associative Functionality 8-3
3D Model-Based Definition 8-4
Starting Autodesk Inventor 8-5
Drawing Mode - 2D Paper Space 8-5
Drawing Sheet Format 8-7
Using the Pre-Defined Drawing Sheet Formats 8-9
Delete, Activate, and Edit Drawing Sheets 8-11
Add a Base View 8-12
Create Projected Views 8-13
Adjust the View Scale 8-14
Chapter 9
Datum Features and Auxiliary Views

- Work Features
- Auxiliary Views in 2D Drawings
- The Rod-Guide Design
- Modeling Strategy
- Starting Autodesk Inventor
- Apply the BORN Technique
- Creating the Base Feature
- Create an Angled Work Plane
- Create a 2D Sketch on the Work Plane
- Use the Projected Geometry Option
- Complete the Solid Feature
- Create an Offset Work Plane
- Create another Cut Feature Using the Work Plane
- Start a New 2D Drawing
- Add a Base View
- Create an Auxiliary View
- Display Feature Dimensions
- Adjust the View Scale
- Retrieving Dimensions in the Auxiliary View
- Add Center Marks and Center Lines
- Complete the Title Block with iProperties
- Edit the Isometric view
- Review Questions
- Exercises

Chapter 10
Introduction to 3D Printing

- What is 3D Printing?
- Development of 3D Printing Technologies
- Primary Types of 3D Printing Processes
- Primary 3D Printing Materials for FDM and FFF
- From 3D Model to 3D Printed Part
Starting Autodesk Inventor 10-12
Export the Design as an STL File 10-13
Using the 3D Printing Software to Create the 3D Print 10-16
Questions 10-24

Chapter 11
Symmetrical Features in Designs

Introduction 11-3
A Revolved Design: Pulley 11-3
Modeling Strategy - A Revolved Design 11-4
Starting Autodesk Inventor 11-5
Set Up the Display of the Sketch Plane 11-5
Creating the 2D Sketch for the Base Feature 11-6
Create the Revolved Feature 11-10
Mirroring Features 11-11
Create a Pattern Leader Using Construction Geometry 11-13
Circular Pattern 11-18
Examine the Design Parameters 11-20
Drawing Mode – Defining a New Border and Title Block 11-20
Create a Drawing Template 11-24
Create the Necessary Views 11-25
Retrieve Dimensions – Features Option 11-28
Associative Functionality – A Design Change 11-30
Add Centerlines to the Pattern Feature 11-32
Complete the Drawing 11-33
Review Questions 11-36
Exercises 11-37

Chapter 12
Advanced 3D Construction Tools

Introduction 12-3
A Thin-Walled Design: Dryer Housing 12-3
Modeling Strategy 12-4
Starting Autodesk Inventor 12-5
Set Up the Display of the Sketch Plane 12-5
Create the 2D Sketch for the Base Feature 12-6
Create a Revolved Feature 12-9
Create Offset Work Planes 12-10
Start 2D Sketches on the Work Planes 12-11
Create a Lofted Feature 12-14
Create an Extruded Feature 12-16
Complete the Extruded Feature 12-18
Create 3D Rounds and Fillets 12-19
Create a Shell Feature 12-20
Create a Pattern Leader 12-21
Create a Rectangular Pattern 12-24
Create a Swept Feature 12-26
Define a Sweep Path 12-26
Define the Sweep Section 12-28
Complete the Swept Feature 12-30
Review Questions 12-32
Exercises 12-33

Chapter 13
Sheet Metal Designs

Sheet Metal Processes 13-3
Sheet Metal Modeling 13-5
K-Factor 13-6
The Actuator Bracket Design 13-7
Starting Autodesk Inventor 13-8
Sheet Metal Defaults 13-9
Create the Base Face Feature of the Design 13-12
Using the Flange Command 13-15
Mirroring Features 13-19
Create a Cut Feature 13-20
Create a Fold Feature 13-22
Create the Associated Flat Pattern 13-25
Confirm the Flattened Length 13-26
Create a 2D Sheet Metal Drawing 13-27
Review Questions 13-34
Exercises 13-35

Chapter 14
Assembly Modeling - Putting It All Together

Introduction 14-3
Assembly Modeling Methodology 14-4
The Shaft Support Assembly 14-5
Additional Parts 14-5
(1) Collar 14-5
(2) Bearing 14-6
(3) Base-Plate 14-6
(4) Cap-Screw 14-7
Starting Autodesk Inventor 14-8
Placing the First Component 14-9
Placing the Second Component 14-10
Degrees of Freedom and Constraints 14-11
Assembly Constraints 14-12
Apply the First Assembly Constraint 14-15
Apply a Second Mate Constraint 14-16
Constrained Move 14-17
The Geneva CAM Assembly 16-4
Download the Geneva-Wheel DWG File 16-4
Opening AutoCAD DWG File in Inventor 16-5
Switch to the AutoCAD DWG Layout 16-6
2D Design Reuse 16-8
Complete the Imported Sketch 16-12
Create the First Solid Feature 16-14
Create a Mirrored Feature 16-15
Circular Pattern 16-16
Complete the Geneva Wheel Design 16-17
Additional Parts 16-18
Start a New Assembly 16-20
Placing the Second Component 16-21
The Assembly Joint Command 16-22
Create a Joint Connection 16-23
Constrained Move 16-24
Placing a Copy of the Geneva-Driver Part 16-24
Create a Second Joint Connection 16-25
Assemble the Geneva-Pin Part 16-26
Repositioning the Pieces 16-28
Animation with Drive Tool 16-29
Use the Inventor Contact Solver 16-31
Constrained Move with Contact Solver 16-33
Review Questions 16-34
Exercises 16-35

Chapter 17
Introduction to Stress Analysis

Introduction 17-2
Problem Statement 17-4
Preliminary Analysis 17-4
• Maximum Normal Stress 17-4
• Maximum Displacement 17-5
Finite Element Analysis Procedure 17-6
Create the Autodesk Inventor Part 17-7
Create the 2D Sketch for the Plate 17-7
Assigning the Material Properties 17-10
Switch to the Stress Analysis Module 17-11
Apply Constraints and Loads 17-14
Create a Mesh and Run the Solver 17-16
Refinement of the FEA Mesh – Global Element Size 17-18
Refinement of the FEA Mesh – Local Element Size 17-20
Comparison of Results 17-23
Create an HTML Report 17-24
Geometric Considerations of Finite Elements 17-25
Conclusion 17-26