Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

Elementary engineering fracture mechanics

Paperback Engels 1982 1982e druk 9789401183703
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

When asked to start teachmg a course on engineering fracture mechanics, I realized that a concise textbook, giving a general oversight of the field, did not exist. The explanation is undoubtedly that the subject is still in a stage of early development, and that the methodologies have still a very limIted applicability. It is not possible to give rules for general application of fracture mechanics concepts. Yet our comprehension of cracking and fracture beha viour of materials and structures is steadily increasing. Further developments may be expected in the not too distant future, enabling useful prediction of fracture safety and fracture characteristics on the basis of advanced fracture mechanics procedures. The user of such advanced procedures ml:lst have a general understanding of the elementary concepts, which are provided by this volume. Emphasis was placed on the practical application of fracture mechanics, but it was aimed to treat the subject in a way that may interest both metallurgists and engineers. For the latter, some general knowledge of fracture mechanisms and fracture criteria is indispensable for an apprecia­ tion of the limita tions of fracture mechanics. Therefore a general discussion is provIded on fracture mechanisms, fracture criteria, and other metal­ lurgical aspects, wIthout going into much detail. Numerous references are provided to enable a more detailed study of these subjects which are still in a stage of speculative treatment.

Specificaties

ISBN13:9789401183703
Taal:Engels
Bindwijze:paperback
Aantal pagina's:469
Uitgever:Springer Netherlands
Druk:1982

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

I Principles.- 1 Summary of basic problems and concepts.- 1.1 Introduction.- 1.2 A crack in a structure.- 1.3 The stress at a crack tip.- 1.4 The Griffith criterion.- 1.5 The crack opening displacement criterion.- 1.6 Crack propagation.- 1.7 Closure.- 2 Mechanisms of fracture and crack growth.- 2.1 Introduction.- 2.2 Cleavage fracture.- 2.3 Ductile fracture.- 2.4 Fatigue cracking.- 2.5 Environment assisted cracking.- 2.6 Service failure analysis.- 3 The elastic crack-tip stress field.- 3.1 The Airy stress function.- 3.2 Complex stress functions.- 3.3 Solution to crack problems.- 3.4 The effect of finite size.- 3.5 Special cases.- 3.6 Elliptical cracks.- 3.7 Some useful expressions.- 4 The crack tip plastic zone.- 4.1 The Irwin plastic zone correction.- 4.2 The Dugdale approach.- 4.3 The shape of the plastic zone.- 4.4 Plane stress versus plane strain.- 4.5 Plastic constraint factor.- 4.6 The thickness effect.- 5 The energy principle.- 5.1 The energy release rate.- 5.2 The criterion for crack growth.- 5.3 The crack resistance (R curve).- 5.4 Compliance.- 5.5 The J integral.- 5.6 Tearing modulus.- 5.7 Stability.- 6 Dynamics and crack arrest.- 6.1 Crack speed and kinetic energy.- 6.2 The dynamic stress intensity and elastic energy release rate.- 6.3 Crack branching.- 6.4 The principles of crack arrest.- 6.5 Crack arrest in practice.- 6.6 Dynamic fracture toughness.- 7 Plane strain fracture toughness.- 7.1 The standard test.- 7.2 Size requirements.- 7.3 Non-linearity.- 7.4 Applicability.- 8 Plane stress and transitional behaviour.- 8.1 Introduction.- 8.2 An engineering concept of plane stress.- 8.3 The R curve concept.- 8.4 The thickness effect.- 8.5 Plane stress testing.- 8.6 Closure.- 9 Elastic-plastic fracture.- 9.1 Fracture beyond general yield.- 9.2 The crack tip opening displacement.- 9.3 The possible use of the CTOD criterion.- 9.4 Experimental determination of CTOd.- 9.5 Parameters affecting the critical CTOD.- 9.6 Limitations, fracture at general yield.- 9.7 Use of the J integral.- 9.8 Limitations of the J integral.- 9.9 Measurement of JIc and JR.- 9.10 Closure.- 10 Fatigue crack propagation.- 10.1 Introduction.- 10.2 Crack growth and the stress intensity factor.- 10.3 Factors affecting crack propagation.- 10.4 Variable amplitude service loading.- 10.5 Retardation models.- 10.6 Similitude.- 10.7 Small cracks.- 10.8 Closure.- 11 Fracture resistance of materials.- 11.1 Fracture criteria.- 11.2 Fatigue cracking criteria.- 11.3 The effect of alloying and second phase particles.- 11.4 Effect of processing, anisotropy.- 11.5. Effect of temperature.- 11.6 Closure.- II Applications.- 12 Fail-safety and damage tolerance.- 12.1 Introduction.- 12.2 Means to provide fail-safety.- 12.3 Required information for fracture mechanics approach.- 12.4 Closure.- 13 Determination of stress intensity factors.- 13.1 Introduction.- 13.2 Analytical and numerical methods.- 13.3 Finite element methods.- 13.4 Experimental methods.- 14 Practical problems.- 14.1 Introduction.- 14.2 Through cracks emanating from holes.- 14.3 Corner cracks at holes.- 14.4 Cracks approaching holes.- 14.5 Combined loading.- 14.6 Fatigue crack growth under mixed mode loading.- 14.7 Biaxial loading.- 14.8 Fracture toughness of weldments.- 14.9 Service failure analysis.- 15 Fracture of structures.- 15.1 Introduction.- 15.2 Pressure vessels and pipelines.- 15.3 “Leak-before-break” criterion.- 15.4 Material selection.- 15.5 The use of the J integral for structural analysis.- 15.6 Collapse analysis.- 15.7 Accuracy of fracture calculations.- 16 Stiffened sheet structures.- 16.1 Introduction.- 16.2 Analysis.- 16.3 Fatigue crack propagation.- 16.4 Residual strength.- 16.5 The R curve and the residual strength of stiffened panels.- 16.6 Other analysis methods.- 16.7 Crack arrest.- 16.8 Closure.- 17 Prediction of fatigue crack growth.- 17.1 Introduction.- 17.2 The load spectrum.- 17.3 Approximation of the stress spectrum.- 17.4 Generation of a stress history.- 17.5 Crack growth integration.- 17.6 Accuracy of predictions.- 17.7 Safety factors.- Author index.

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Elementary engineering fracture mechanics