<p> </p> <h3>Physics for Scientists & Engineers is available in the following versions:</h3> <ul> <li><strong>Complete version</strong> contains 44 Chapters including 9 Chapters of modern physics</li> <li><strong>Classic version</strong> contains 37 Chapters, 35 on classical physics, plus one each on relativity and quantum theory</li> </ul> <h3>3 Volume version: Available separately or packaged together.</h3> <ul> <li><strong>Volume 1: Chapters 1-20</strong> on mechanics, including fluids, oscillations, waves, plus heat and thermodynamics.</li> <li><strong>Volume 2: Chapters 21-35</strong> on electricity and magnetism, plus light and optics.</li> <li><strong>Volume 3: Chapters 36-44</strong> on modern physics: relativity, quantum theory, atomic physics, condensed matter, nuclear physics, elementary particles, cosmology and astrophysics.</li> </ul> <p>Sections marked with a star * may be considered optional.</p> <ol> <li><strong>Introduction, Measurement, Estimating</strong> <ul> <li>1.1 How Science Works</li> <li>1.2 Models, Theories, and Laws</li> <li>1.3 Measurement and Uncertainty; Significant Figures</li> <li>1.4 Units, Standards, and the SI System</li> <li>1.5 Converting Units</li> <li>1.6 Order of Magnitude: Rapid Estimating</li> <li>*1.7 Dimensions and Dimensional Analysis</li> </ul> </li> </ol> <ol start="2"> <li><strong>Describing Motion: Kinematics in One Dimension</strong> <ul> <li>2.1 Reference Frames and Displacement</li> <li>2.2 Average Velocity</li> <li>2.3 Instantaneous Velocity</li> <li>2.4 Acceleration</li> <li>2.5 Motion at Constant Acceleration</li> <li>2.6 Solving Problems</li> <li>2.7 Freely Falling Objects</li> <li>*2.8 Variable Acceleration; Integral Calculus</li> </ul> </li> </ol> <ol start="3"> <li><strong>Kinematics in Two or Three Dimensions; Vectors</strong> <ul> <li>3.1 Vectors and Scalars</li> <li>3.2 Addition of Vectors--Graphical Methods</li> <li>3.3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar</li> <li>3.4 Adding Vectors by Components</li> <li>3.5 Unit Vectors</li> <li>3.6 Vector Kinematics</li> <li>3.7 Projectile Motion</li> <li>3.8 Solving Problems Involving Projectile Motion</li> <li>3.9 Relative Velocity</li> </ul> </li> </ol> <ol start="4"> <li><strong>Dynamics: Newton's Laws of Motion</strong> <ul> <li>4.1 Force</li> <li>4.2 Newton's First Law of Motion</li> <li>4.3 Mass</li> <li>4.4 Newton's Second Law of Motion</li> <li>4.5 Newton's Third Law of Motion</li> <li>4.6 Weight--the Force of Gravity; and the Normal Force</li> <li>4.7 Solving Problems with Newton's Laws: Free-Body Diagrams</li> <li>4.8 Problem Solving--A General Approach</li> </ul> </li> </ol> <ol start="5"> <li><strong>Using Newton's Laws: Friction, Circular Motion, Drag Forces</strong> <ul> <li>5.1 Using Newton's Laws with Friction</li> <li>5.2 Uniform Circular Motion--Kinematics</li> <li>5.3 Dynamics of Uniform Circular Motion</li> <li>5.4 Highway Curves: Banked and Unbanked</li> <li>5.5 Nonuniform Circular Motion</li> <li>*5.6 Velocity-Dependent Forces: Drag and Terminal Velocity</li> </ul> </li> </ol> <ol start="6"> <li><strong>Gravitation and Newton's Synthesis</strong> <ul> <li>6.1 Newton's Law of Universal Gravitation</li> <li>6.2 Vector Form of Newton's Law of Universal Gravitation</li> <li>6.3 Gravity Near the Earth's Surface</li> <li>6.4 Satellites and "Weightlessness"</li> <li>6.5 Planets, Kepler's Laws, and Newton's Synthesis</li> <li>6.6 Moon Rises an Hour Later Each Day</li> <li>6.7 Types of Forces in Nature</li> <li>*6.8 Gravitational Field</li> <li>*6.9 Principle of Equivalence; Curvature of Space; Black Holes</li> </ul> </li> </ol> <ol start="7"> <li><strong>Work and Energy</strong> <ul> <li>7.1 Work Done by a Constant Force</li> <li>7.2 Scalar Product of Two Vectors</li> <li>7.3 Work Done by a Varying Force</li> <li>7.4 Kinetic Energy and the Work-Energy Principle</li> </ul> </li> </ol> <ol start="8"> <li><strong>Conservation of Energy</strong> <ul> <li>8.1 Conservative and Nonconservative Forces</li> <li>8.2 Potential Energy</li> <li>8.3 Mechanical Energy and Its Conservation</li> <li>8.4 Problem Solving Using Conservation of Mechanical Energy</li> <li>8.5 The Law of Conservation of Energy</li> <li>8.6 Energy Conservation with Dissipative Forces: Solving Problems</li> <li>8.7 Gravitational Potential Energy and Escape Velocity</li> <li>8.8 Power</li> <li>8.9 Potential Energy Diagrams; Stable and Unstable Equilibrium</li> <li>*8.10 Gravitational Assist (Slingshot)</li> </ul> </li> </ol> <ol start="9"> <li><strong>Linear Momentum</strong> <ul> <li>9.1 Momentum and Its Relation to Force</li> <li>9.2 Conservation of Momentum</li> <li>9.3 Collisions and Impulse</li> <li>9.4 Conservation of Energy and Momentum in Collisions</li> <li>9.5 Elastic Collisions in One Dimension</li> <li>9.6 Inelastic Collisions</li> <li>9.7 Collisions in 2 or 3 Dimensions</li> <li>9.8 Center of Mass (cm)</li> <li>9.9 Center of Mass and Translational Motion</li> <li>*9.10 Systems of Variable Mass; Rocket Propulsion</li> </ul> </li> </ol> <ol start="10"> <li><strong>Rotational Motion</strong> <ul> <li>10.1 Angular Quantities</li> <li>10.2 Vector Nature of Angular Quantities</li> <li>10.3 Constant Angular Acceleration</li> <li>10.4 Torque</li> <li>10.5 Rotational Dynamics; Torque and Rotational Inertia</li> <li>10.6 Solving Problems in Rotational Dynamics</li> <li>10.7 Determining Moments of Inertia</li> <li>10.8 Rotational Kinetic Energy</li> <li>10.9 Rotational plus Translational Motion; Rolling</li> <li>*10.10 Why Does a Rolling Sphere Slow Down?</li> </ul> </li> </ol> <ol start="11"> <li><strong>Angular Momentum; General Rotation</strong> <ul> <li>11.1 Angular Momentum-- Objects Rotating About a Fixed Axis</li> <li>11.2 Vector Cross Product; Torque as a Vector</li> <li>11.3 Angular Momentum of a Particle</li> <li>11.4 Angular Momentum and Torque for a System of Particles; General Motion</li> <li>11.5 Angular Momentum and Torque for a Rigid Object</li> <li>11.6 Conservation of Angular Momentum</li> <li>*11.7 The Spinning Top and Gyroscope</li> <li>11.8 Rotating Frames of Reference; Inertial Forces</li> <li>*11.9 The Coriolis Effect</li> </ul> </li> </ol> <ol start="12"> <li><strong>Static Equilibrium; Elasticity and Fracture</strong> <ul> <li>12.1 The Conditions for Equilibrium</li> <li>12.2 Solving Statics Problems</li> <li>*12.3 Applications to Muscles and Joints</li> <li>12.4 Stability and Balance</li> <li>12.5 Elasticity; Stress and Strain</li> <li>12.6 Fracture</li> <li>*12.7 Trusses and Bridges</li> <li>*12.8 Arches and Domes</li> </ul> </li> </ol> <ol start="13"> <li><strong>Fluids</strong> <ul> <li>13.1 Phases of Matter</li> <li>13.2 Density and Specific Gravity</li> <li>13.3 Pressure in Fluids</li> <li>13.4 Atmospheric Pressure and Gauge Pressure</li> <li>13.5 Pascal's Principle</li> <li>13.6 Measurement of Pressure; Gauges and the Barometer</li> <li>13.7 Buoyancy and Archimedes' Principle</li> <li>13.8 Fluids in Motion; Flow Rate and the Equation of Continuity</li> <li>13.9 Bernoulli's Equation</li> <li>13.10 Applications of Bernoulli's Principle: Torricelli, Airplanes, Baseballs, Blood Flow</li> <li>13.11 Viscosity</li> <li>*13.12 Flow in Tubes: Poiseuille's Equation, Blood Flow</li> <li>*13.13 Surface Tension and Capillarity</li> <li>*13.14 Pumps, and the Heart</li> </ul> </li> </ol> <ol start="14"> <li><strong>Oscillations</strong> <ul> <li>14.1 Oscillations of a Spring</li> <li>14.2 Simple Harmonic Motion</li> <li>14.3 Energy in the Simple Harmonic Oscillator</li> <li>14.4 Simple Harmonic Motion Related to Uniform Circular Motion</li> <li>14.5 The Simple Pendulum</li> <li>*14.6 The Physical Pendulum and the Torsion Pendulum</li> <li>14.7 Damped Harmonic Motion</li> <li>14.8 Forced Oscillations; Resonance</li> </ul> </li> </ol> <ol start="15"> <li><strong>Wave Motion</strong> <ul> <li>15.1 Characteristics of Wave Motion</li> <li>15.2 Types of Waves: Transverse and Longitudinal</li> <li>15.3 Energy Transported by Waves</li> <li>15.4 Mathematical Representation of a Traveling Wave</li> <li>*15.5 The Wave Equation</li> <li>15.6 The Principle of Superposition</li> <li>15.7 Reflection and Transmission</li> <li>15.8 Interference</li> <li>15.9 Standing Waves; Resonance</li> <li>15.10 Refraction</li> <li>15.11 Diffraction</li> </ul> </li> </ol> <ol start="16"> <li><strong>Sound</strong> <ul> <li>16.1 Characteristics of Sound</li> <li>16.2 Mathematical Representation of Longitudinal Waves</li> <li>16.3 Intensity of Sound: Decibels</li> <li>16.4 Sources of Sound: Vibrating Strings and Air Columns</li> <li>*16.5 Quality of Sound, and Noise; Superposition</li> <li>16.6 Interference of Sound Waves; Beats</li> <li>16.7 Doppler Effect</li> <li>*16.8 Shock Waves and the Sonic Boom</li> <li>*16.9 Applications: Sonar, Ultrasound, and Medical Imaging</li> </ul> </li> </ol> <ol start="17"> <li><strong>Temperature, Thermal Expansion, and the Ideal Gas Law</strong> <ul> <li>17.1 Atomic Theory of Matter</li> <li>17.2 Temperature and Thermometers</li> <li>17.3 Thermal Equilibrium and the Zeroth Law of Thermodynamics</li> <li>17.4 Thermal Expansion</li> <li>*17.5 Thermal Stresses</li> <li>17.6 The Gas Laws and Absolute Temperature</li> <li>17.7 The Ideal Gas Law</li> <li>17.8 Problem Solving with the Ideal Gas Law</li> <li>17.9 Ideal Gas Law in Terms of Molecules: Avogadro's Number</li> <li>*17.10 Ideal Gas Temperature Scale-- a Standard</li> </ul> </li> </ol> <ol start="18"> <li><strong>Kinetic Theory of Gases</strong> <ul> <li>18.1 The Ideal Gas Law and the Molecular Interpretation of Temperature</li> <li>18.2 Distribution of Molecular Speeds</li> <li>18.3 Real Gases and Changes of Phase</li> <li>18.4 Vapor Pressure and Humidity</li> <li>18.5 Temperature of Water Decrease with Altitude</li> <li>18.6 Van der Waals Equation of State</li> <li>18.7 Mean Free Path</li> <li>18.8 Diffusion</li> </ul> </li> </ol> <ol start="19"> <li><strong>Heat and the First Law of Thermodynamics</strong> <ul> <li>19.1 Heat as Energy Transfer</li> <li>19.2 Internal Energy</li> <li>19.3 Specific Heat</li> <li>19.4 Calorimetry--Solving Problems</li> <li>19.5 Latent Heat</li> <li>19.6 The First Law of Thermodynamics</li> <li>19.7 Thermodynamic Processes and the First Law</li> <li>19.8 Molar Specific Heats for Gases, and the Equipartition of Energy</li> <li>19.9 Adiabatic Expansion of a Gas</li> <li>19.10 Heat Transfer: Conduction, Convection, Radiation</li> </ul> </li> </ol> <ol start="20"> <li><strong>Second Law of Thermodynamics</strong> <ul> <li>20.1 The Second Law of Thermodynamics--Introduction</li> <li>20.2 Heat Engines</li> <li>20.3 The Carnot Engine; Reversible and Irreversible Processes</li> <li>20.4 Refrigerators, Air Conditioners, and Heat Pumps</li> <li>20.5 Entropy</li> <li>20.6 Entropy and the Second Law of Thermodynamics</li> <li>20.7 Order to Disorder</li> <li>20.8 Unavailability of Energy; Heat Death</li> <li>20.9 Statistical Interpretation of Entropy and the Second Law</li> <li>*20.10 Thermodynamic Temperature; Third Law of Thermodynamics</li> <li>20.11 Thermal Pollution, Global Warming, and Energy Resources</li> </ul> </li> </ol> <ol start="21"> <li><strong>Electric Charge and Electric Field</strong> <ul> <li>21.1 Static Electricity; Electric Charge and Its Conservation</li> <li>21.2 Electric Charge in the Atom</li> <li>21.3 Insulators and Conductors</li> <li>21.4 Induced Charge; the Electroscope</li> <li>21.5 Coulomb's Law</li> <li>21.6 The Electric Field</li> <li>21.7 Electric Field Calculations for Continuous Charge Distributions</li> <li>21.8 Field Lines</li> <li>21.9 Electric Fields and Conductors</li> <li>21.10 Motion of a Charged Particle in an Electric Field</li> <li>21.11 Electric Dipoles</li> <li>*21.12 Electric Forces in Molecular Biology: DNA Structure and Replication</li> </ul> </li> </ol> <ol start="22"> <li><strong>Gauss's Law</strong> <ul> <li>22.1 Electric Flux</li> <li>22.2 Gauss's Law</li> <li>22.3 Applications of Gauss's Law</li> <li>*22.4 Experimental Basis of Gauss's and Coulomb's Laws</li> </ul> </li> </ol> <ol start="23"> <li><strong>Electric Potential</strong> <ul> <li>23.1 Electric Potential Energy and Potential Difference</li> <li>23.2 Relation between Electric Potential and Electric Field</li> <li>23.3 Electric Potential Due to Point Charges</li> <li>23.4 Potential Due to Any Charge Distribution</li> <li>23.5 Equipotential Lines and Surfaces</li> <li>23.6 Potential Due to Electric Dipole; Dipole Moment</li> <li>23.7 E→Determined from V</li> <li>23.8 Electrostatic Potential Energy; the Electron Volt</li> <li>23.9 Digital; Binary Numbers; Signal Voltage</li> <li>*23.10 TV and Computer Monitors</li> <li>*23.11 Electrocardiogram (ECG or EKG)</li> </ul> </li> </ol> <ol start="24"> <li><strong>Capacitance, Dielectrics, Electric Energy Storage</strong> <ul> <li>24.1 Capacitors</li> <li>24.2 Determination of Capacitance</li> <li>24.3 Capacitors in Series and Parallel</li> <li>24.4 Storage of Electric Energy</li> <li>24.5 Dielectrics</li> <li>*24.6 Molecular Description of Dielectrics</li> </ul> </li> </ol> <ol start="25"> <li><strong>Electric Current and Resistance</strong> <ul> <li>25.1 The Electric Battery</li> <li>25.2 Electric Current</li> <li>25.3 Ohm's Law: Resistance and Resistors</li> <li>25.4 Resistivity</li> <li>25.5 Electric Power</li> <li>25.6 Power in Household Circuits</li> <li>25.7 Alternating Current</li> <li>25.8 Microscopic View of Electric Current</li> <li>*25.9 Superconductivity</li> <li>*25.10 Electrical Conduction in the Human Nervous System</li> </ul> </li> </ol> <ol start="26"> <li><strong>DC Circuits</strong> <ul> <li>26.1 EMF and Terminal Voltage</li> <li>26.2 Resistors in Series and in Parallel</li> <li>26.3 Kirchhoff's Rules</li> <li>26.4 EMFs in Series and in Parallel; Charging a Battery</li> <li>26.5 RC Circuits --Resistor and Capacitor in Series</li> <li>26.6 Electric Hazards and Safety</li> <li>26.7 Ammeters and Voltmeters--Measurement Affects Quantity Measured</li> </ul> </li> </ol> <ol start="27"> <li><strong>Magnetism</strong> <ul> <li>27.1 Magnets and Magnetic Fields</li> <li>27.2 Electric Currents Produce Magnetic Fields</li> <li>27.3 Force on an Electric Current in a Magnetic Field; Definition of B→</li> <li>27.4 Force on an Electric Charge Moving in a Magnetic Field</li> <li>27.5 Torque on a Current Loop; Magnetic Dipole Moment</li> <li>27.6 Applications: Motors, Loudspeakers, Galvanometers</li> <li>27.7 Discovery and Properties of the Electron</li> <li>27.8 The Hall Effect</li> <li>27.9 Mass Spectrometer</li> </ul> </li> </ol> <ol start="28"> <li><strong>Sources of Magnetic Field</strong> <ul> <li>28.1 Magnetic Field Due to a Straight Wire</li> <li>28.2 Force between Two Parallel Wires</li> <li>28.3 Definitions of the Ampere and the Coulomb</li> <li>28.4 Ampère's Law</li> <li>28.5 Magnetic Field of a Solenoid and a Toroid</li> <li>28.6 Biot-Savart Law</li> <li>28.7 Magnetic Field Due to a Single Moving Charge</li> <li>28.8 Magnetic Materials--Ferromagnetism</li> <li>28.9 Electromagnets and Solenoids--Applications</li> <li>28.10 Magnetic Fields in Magnetic Materials; Hysteresis</li> <li>*28.11 Paramagnetism and Diamagnetism</li> </ul> </li> </ol> <ol start="29"> <li><strong>Electromagnetic Induction and Faraday's Law</strong> <ul> <li>29.1 Induced EMF</li> <li>29.2 Faraday's Law of Induction; Lenz's Law</li> <li>29.3 EMF Induced in a Moving Conductor</li> <li>29.4 Electric Generators</li> <li>29.5 Back EMF and Counter Torque; Eddy Currents</li> <li>29.6 Transformers and Transmission of Power</li> <li>29.7 A Changing Magnetic Flux Produces an Electric Field</li> <li>*29.8 Information Storage: Magnetic and Semiconductor</li> <li>*29.9 Applications of Induction: Microphone, Seismograph, GFCI</li> </ul> </li> </ol> <ol start="30"> <li><strong>Inductance, Electromagnetic Oscillations, and AC Circuits</strong> <ul> <li>30.1 Mutual Inductance</li> <li>30.2 Self-Inductance; Inductors</li> <li>30.3 Energy Stored in a Magnetic Field</li> <li>30.4 LR Circuits</li> <li>30.5 LC Circuits and Electromagnetic Oscillations</li> <li>30.6 LC Oscillations with Resistance (LRC Circuit)</li> <li>30.7 AC Circuits and Reactance</li> <li>30.8 LRC Series AC Circuit; Phasor Diagrams</li> <li>30.9 Resonance in AC Circuits</li> <li>30.10 Impedance Matching</li> <li>*30.11 Three-Phase AC</li> </ul> </li> </ol> <ol start="31"> <li><strong>Maxwell's Equations and Electromagnetic Waves</strong> <ul> <li>31.1 Changing Electric Fields Produce Magnetic Fields; Displacement Current</li> <li>31.2 Gauss's Law for Magnetism</li> <li>31.3 Maxwell's Equations</li> <li>31.4 Production of Electromagnetic Waves</li> <li>31.5 Electromagnetic Waves, and Their Speed, Derived from Maxwell's Equations</li> <li>31.6 Light as an Electromagnetic Wave and the Electromagnetic Spectrum</li> <li>31.7 Measuring the Speed of Light</li> <li>31.8 Energy in EM Waves; the Poynting Vector</li> <li>31.9 Radiation Pressure</li> <li>31.10 Radio and Television; Wireless Communication</li> </ul> </li> </ol> <ol start="32"> <li><strong>Light: Reflection and Refraction</strong> <ul> <li>32.1 The Ray Model of Light</li> <li>32.2 Reflection; Image Formation by a Plane Mirror</li> <li>32.3 Formation of Images by Spherical Mirrors</li> <li>32.4 Seeing Yourself in a Magnifying Mirror (Concave)</li> <li>32.5 Convex (Rearview) Mirrors</li> <li>32.6 Index of Refraction</li> <li>32.7 Refraction: Snell's Law</li> <li>32.8 The Visible Spectrum and Dispersion</li> <li>32.9 Total Internal Reflection; Fiber Optics</li> <li>*32.10 Refraction at a Spherical Surface</li> </ul> </li> </ol> <ol start="33"> <li><strong>Lenses and Optical Instruments</strong> <ul> <li>33.1 Thin Lenses; Ray Tracing and Focal Length</li> <li>33.2 The Thin Lens Equation</li> <li>33.3 Combinations of Lenses</li> <li>33.4 Lensmaker's Equation</li> <li>33.5 Cameras: Film and Digital</li> <li>33.6 The Human Eye; Corrective Lenses</li> <li>33.7 Magnifying Glass</li> <li>33.8 Telescopes</li> <li>33.9 Compound Microscope</li> <li>33.10 Aberrations of Lenses and Mirrors</li> </ul> </li> </ol> <ol start="34"> <li><strong>The Wave Nature of Light: Interference and Polarization</strong> <ul> <li>34.1 Waves vs. Particles; Huygens' Principle and Diffraction</li> <li>34.2 Huygens' Principle and the Law of Refraction</li> <li>34.3 Interference--Young's Double-Slit Experiment</li> <li>34.4 Intensity in the Double-Slit Interference Pattern</li> <li>34.5 Interference in Thin Films</li> <li>34.6 Michelson Interferometer</li> <li>34.7 Polarization</li> <li>*34.8 Liquid Crystal Displays (LCD)</li> <li>*34.9 Scattering of Light by the Atmosphere</li> <li>34.10 Lumens, Luminous Flux, and Luminous Intensity</li> <li>*34.11 Efficiency of Lightbulbs</li> </ul> </li> </ol> <ol start="35"> <li><strong>Diffraction</strong> <ul> <li>35.1 Diffraction by a Single Slit or Disk</li> <li>35.2 Intensity in Single-Slit Diffraction Pattern</li> <li>35.3 Diffraction in the Double-Slit Experiment</li> <li>35.4 Interference vs. Diffraction</li> <li>35.5 Limits of Resolution; Circular Apertures</li> <li>35.6 Resolution of Telescopes and Microscopes; the λ Limit</li> <li>35.7 Resolution of the Human Eye and Useful Magnification</li> <li>35.8 Diffraction Grating</li> <li>35.9 The Spectrometer and Spectroscopy</li> <li>*35.10 Peak Widths and Resolving Power for a Diffraction Grating</li> <li>35.11 X-Rays and X-Ray Diffraction</li> <li>*35.12 X-Ray Imaging and Computed Tomography (CT Scan)</li> <li>*35.13 Specialty Microscopes and Contrast</li> </ul> </li> </ol> <ol start="36"> <li><strong>The Special Theory of Relativity</strong> <ul> <li>36.1 Galilean.Newtonian Relativity</li> <li>36.2 The Michelson.Morley Experiment</li> <li>36.3 Postulates of the Special Theory of Relativity</li> <li>36.4 Simultaneity</li> <li>36.5 Time Dilation and the Twin Paradox</li> <li>36.6 Length Contraction</li> <li>36.7 Four-Dimensional Space.Time</li> <li>36.8 Galilean and Lorentz Transformations</li> <li>36.9 Relativistic Momentum</li> <li>36.10 The Ultimate Speed</li> <li>36.11 E = mc2; Mass and Energy</li> <li>36.12 Doppler Shift for Light</li> <li>36.13 The Impact of Special Relativity</li> </ul> </li> </ol> <ol start="37"> <li><strong>Early Quantum Theory and Models of the Atom</strong> <ul> <li>37.1 Blackbody Radiation; Planck's Quantum Hypothesis</li> <li>37.2 Photon Theory of Light and the Photoelectric Effect</li> <li>37.3 Energy, Mass, and Momentum of a Photon</li> <li>37.4 Compton Effect</li> <li>37.5 Photon Interactions; Pair Production</li> <li>37.6 Wave.Particle Duality; the Principle of Complementarity</li> <li>37.7 Wave Nature of Matter</li> <li>37.8 Electron Microscopes</li> <li>37.9 Early Models of the Atom</li> <li>37.10 Atomic Spectra: Key to the Structure of the Atom</li> <li>37.11 The Bohr Model</li> <li>37.12 de Broglie's Hypothesis Applied to Atoms</li> </ul> </li> </ol> <ol start="38"> <li><strong>Quantum Mechanics</strong> <ul> <li>38.1 Quantum Mechanics--A New Theory</li> <li>38.2 The Wave Function and Its Interpretation; the Double-Slit Experiment</li> <li>38.3 The Heisenberg Uncertainty Principle</li> <li>38.4 Philosophic Implications; Probability Versus Determinism</li> <li>38.5 The Schrödinger Equation in One Dimension-- Time-Independent Form</li> <li>*38.6 Time-Dependent Schrödinger Equation</li> <li>38.7 Free Particles; Plane Waves and Wave Packets</li> <li>38.8 Particle in an Infinitely Deep Square Well Potential (a Rigid Box)</li> <li>38.9 Finite Potential Well</li> <li>38.10 Tunneling through a Barrier</li> </ul> </li> </ol> <ol start="39"> <li><strong>Quantum Mechanics of Atoms</strong> <ul> <li>39.1 Quantum-Mechanical View of Atoms</li> <li>39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers</li> <li>39.3 Hydrogen Atom Wave Functions</li> <li>39.4 Multielectron Atoms; the Exclusion Principle</li> <li>39.5 Periodic Table of Elements</li> <li>39.6 X-Ray Spectra and Atomic Number</li> <li>*39.7 Magnetic Dipole Moment; Total Angular Momentum</li> <li>39.8 Fluorescence and Phosphorescence</li> <li>39.9 Lasers</li> <li>*39.10 Holography</li> </ul> </li> </ol> <ol start="40"> <li><strong>Molecules and Solids</strong> <ul> <li>40.1 Bonding in Molecules</li> <li>40.2 Potential-Energy Diagrams for Molecules</li> <li>40.3 Weak (van der Waals) Bonds</li> <li>40.4 Molecular Spectra</li> <li>40.5 Bonding in Solids</li> <li>40.6 Free-Electron Theory of Metals; Fermi Energy</li> <li>40.7 Band Theory of Solids</li> <li>40.8 Semiconductors and Doping</li> <li>40.9 Semiconductor Diodes, LEDs, OLEDs</li> <li>40.10 Transistors: Bipolar and MOSFETs</li> <li>40.11 Integrated Circuits, 14-nm Technology</li> </ul> </li> </ol> <ol start="41"> <li><strong>Nuclear Physics and Radioactivity</strong> <ul> <li>41.1 Structure and Properties of the Nucleus</li> <li>41.2 Binding Energy and Nuclear Forces</li> <li>41.3 Radioactivity</li> <li>41.4 Alpha Decay</li> <li>41.5 Beta Decay</li> <li>41.6 Gamma Decay</li> <li>41.7 Conservation of Nucleon Number and Other Conservation Laws</li> <li>41.8 Half-Life and Rate of Decay</li> <li>41.9 Decay Series</li> <li>41.10 Radioactive Dating</li> <li>41.11 Detection of Particles</li> </ul> </li> </ol> <ol start="42"> <li><strong>Nuclear Energy; Effects and Uses of Radiation</strong> <ul> <li>42.1 Nuclear Reactions and the Transmutation of Elements</li> <li>42.2 Cross Section</li> <li>42.3 Nuclear Fission; Nuclear Reactors</li> <li>42.4 Nuclear Fusion</li> <li>42.5 Passage of Radiation Through Matter; Biological Damage</li> <li>42.6 Measurement of Radiation--Dosimetry</li> <li>*42.7 Radiation Therapy</li> <li>*42.8 Tracers in Research and Medicine</li> <li>*42.9 Emission Tomography: PET and SPECT</li> <li>*42.10 Nuclear Magnetic Resonance (NMR); Magnetic Resonance Imaging (MRI)</li> </ul> </li> </ol> <ol start="43"> <li><strong>Elementary Particles</strong> <ul> <li>43.1 High-Energy Particles and Accelerators</li> <li>43.2 Beginnings of Elementary Particle Physics--Particle Exchange</li> <li>43.3 Particles and Antiparticles</li> <li>43.4 Particle Interactions and Conservation Laws</li> <li>43.5 Neutrinos</li> <li>43.6 Particle Classification</li> <li>43.7 Particle Stability and Resonances</li> <li>43.8 Strangeness? Charm? Towards a New Model</li> <li>43.9 Quarks</li> <li>43.10 The Standard Model: QCD and Electroweak Theory</li> <li>43.11 Grand Unified Theories</li> <li>43.12 Strings and Supersymmetry</li> </ul> </li> </ol> <ol start="44"> <li><strong>Astrophysics and Cosmology</strong> <ul> <li>44.1 Stars and Galaxies</li> <li>44.2 Stellar Evolution: Birth and Death of Stars, Nucleosynthesis</li> <li>44.3 Distance Measurements</li> <li>44.4 General Relativity: Gravity and the Curvature of Space</li> <li>44.5 The Expanding Universe: Redshift and Hubble's Law</li> <li>44.6 The Big Bang and the Cosmic Microwave Background</li> <li>44.7 The Standard Cosmological Model: Early History of the Universe</li> <li>44.8I nflation: Explaining Flatness, Uniformity, and Structure</li> <li>44.9 Dark Matter and Dark Energy</li> <li>44.10 Large-Scale Structure of the Universe</li> <li>44.11 Gravitational Waves--LIGO</li> <li>44.12 Finally . . .</li> </ul> </li> </ol> <h3>APPENDICES</h3> <ul> <li>A. Mathematical Formulas</li> <li>B. Derivatives and Integrals</li> <li>C. Numerical Integration</li> <li>D. More on Dimensional Analysis</li> <li>E. Gravitational Force Due to a Spherical Mass Distribution</li> <li>F. Differential Form of Maxwell's Equations</li> <li>G. Selected Isotopes</li> </ul> <p></p>