, ,

Thomas' Calculus

Early Transcendentals

E-book Engels 2017 9780134439471
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

For three-semester or four-quarter courses in Calculus for students majoring in mathematics, engineering, or science

Clarity and precision

Thomas' Calculus: Early Transcendentals helps students reach the level of mathematical proficiency and maturity you require, but with support for students who need it through its balance of clear and intuitive explanations, current applications, and generalized concepts. In the 14th Edition, new co-author Christopher Heil (Georgia Institute of Technology) partners with author Joel Hass to preserve what is best about Thomas' time-tested text while reconsidering every word and every piece of art with today's students in mind. The result is a text that goes beyond memorizing formulas and routine procedures to help students generalize key concepts and develop deeper understanding.

Also available with MyLab Math

MyLab™ Math is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. A full suite of Interactive Figures have been added to the accompanying MyLab Math course to further support teaching and learning. Enhanced Sample Assignments include just-in-time prerequisite review, help keep skills fresh with distributed practice of key concepts, and provide opportunities to work exercises without learning aids to help students develop confidence in their ability to solve problems independently.

 

Note: You are purchasing a standalone product; MyLab does not come packaged with this content. Students, if interested in purchasing this title with MyLab, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. 

If you would like to purchase both the physical text and MyLab, search for:

0134768493 / 9780134768496 Thomas' Calculus: Early Transcendentals plus MyLab Math with Pearson eText -- Access Card Package, 14/e

 

Package consists of:   

0134439023 / 9780134439020 Thomas' Calculus: Early Transcendentals 0134764528 / 9780134764528 MyLab Math plus Pearson eText -- Standalone Access Card -- for Thomas' Calculus: Early Transcendentals

Specificaties

ISBN13:9780134439471
Taal:Engels
Bindwijze:e-book

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p style="margin: 0px;">1. Functions</p> <p style="margin: 0px;">1.1 Functions and Their Graphs</p> <p style="margin: 0px;">1.2 Combining Functions; Shifting and Scaling Graphs</p> <p style="margin: 0px;">1.3 Trigonometric Functions</p> <p style="margin: 0px;">1.4 Graphing with Software</p> <p style="margin: 0px;">1.5 Exponential Functions</p> <p style="margin: 0px;">1.6 Inverse Functions and Logarithms</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">2. Limits and Continuity</p> <p style="margin: 0px;">2.1 Rates of Change and Tangent Lines to Curves</p> <p style="margin: 0px;">2.2 Limit of a Function and Limit Laws</p> <p style="margin: 0px;">2.3 The Precise Definition of a Limit</p> <p style="margin: 0px;">2.4 One-Sided Limits</p> <p style="margin: 0px;">2.5 Continuity</p> <p style="margin: 0px;">2.6 Limits Involving Infinity; Asymptotes of Graphs</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">3. Derivatives</p> <p style="margin: 0px;">3.1 Tangent Lines and the Derivative at a Point&nbsp; &nbsp;</p> <p style="margin: 0px;">3.2 The Derivative as a Function</p> <p style="margin: 0px;">3.3 Differentiation Rules</p> <p style="margin: 0px;">3.4 The Derivative as a Rate of Change</p> <p style="margin: 0px;">3.5 Derivatives of Trigonometric Functions</p> <p style="margin: 0px;">3.6 The Chain Rule</p> <p style="margin: 0px;">3.7 Implicit Differentiation</p> <p style="margin: 0px;">3.8 Derivatives of Inverse Functions and Logarithms &nbsp;</p> <p style="margin: 0px;">3.9 Inverse Trigonometric Functions&nbsp; &nbsp;</p> <p style="margin: 0px;">3.10 Related Rates&nbsp; &nbsp;</p> <p style="margin: 0px;">3.11 Linearization and Differentials</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">4. Applications of Derivatives</p> <p style="margin: 0px;">4.1 Extreme Values of Functions on Closed Intervals &nbsp;</p> <p style="margin: 0px;">4.2 The Mean Value Theorem&nbsp; &nbsp;</p> <p style="margin: 0px;">4.3 Monotonic Functions and the First Derivative Test&nbsp; &nbsp;</p> <p style="margin: 0px;">4.4 Concavity and Curve Sketching&nbsp; &nbsp;</p> <p style="margin: 0px;">4.5 Indeterminate Forms and L'Hôpital's Rule&nbsp; &nbsp;</p> <p style="margin: 0px;">4.6 Applied Optimization&nbsp; &nbsp;</p> <p style="margin: 0px;">4.7 Newton's Method&nbsp;&nbsp; &nbsp;</p> <p style="margin: 0px;">4.8 Antiderivatives&nbsp;</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">5. Integrals</p> <p style="margin: 0px;">5.1 Area and Estimating with Finite Sums</p> <p style="margin: 0px;">5.2 Sigma Notation and Limits of Finite Sums</p> <p style="margin: 0px;">5.3 The Definite Integral</p> <p style="margin: 0px;">5.4 The Fundamental Theorem of Calculus</p> <p style="margin: 0px;">5.5 Indefinite Integrals and the Substitution Method</p> <p style="margin: 0px;">5.6 Definite Integral Substitutions and the Area Between Curves</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">6. Applications of Definite Integrals</p> <p style="margin: 0px;">6.1 Volumes Using Cross-Sections</p> <p style="margin: 0px;">6.2 Volumes Using Cylindrical Shells</p> <p style="margin: 0px;">6.3 Arc Length</p> <p style="margin: 0px;">6.4 Areas of Surfaces of Revolution</p> <p style="margin: 0px;">6.5 Work and Fluid Forces</p> <p style="margin: 0px;">6.6 Moments and Centers of Mass</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">7. Integrals and Transcendental Functions</p> <p style="margin: 0px;">7.1 The Logarithm Defined as an Integral</p> <p style="margin: 0px;">7.2 Exponential Change and Separable Differential Equations&nbsp;&nbsp;&nbsp;</p> <p style="margin: 0px;">7.3 Hyperbolic Functions&nbsp;&nbsp;&nbsp;</p> <p style="margin: 0px;">7.4 Relative Rates of Growth&nbsp;&nbsp;&nbsp;</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">8. Techniques of Integration</p> <p style="margin: 0px;">8.1 Using Basic Integration Formulas</p> <p style="margin: 0px;">8.2 Integration by Parts</p> <p style="margin: 0px;">8.3 Trigonometric Integrals</p> <p style="margin: 0px;">8.4 Trigonometric Substitutions</p> <p style="margin: 0px;">8.5 Integration of Rational Functions by Partial Fractions</p> <p style="margin: 0px;">8.6 Integral Tables and Computer Algebra Systems</p> <p style="margin: 0px;">8.7 Numerical Integration</p> <p style="margin: 0px;">8.8 Improper Integrals</p> <p style="margin: 0px;">8.9 Probability</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">9. First-Order Differential Equations</p> <p style="margin: 0px;">9.1 Solutions, Slope Fields, and Euler's Method</p> <p style="margin: 0px;">9.2 First-Order Linear Equations</p> <p style="margin: 0px;">9.3 Applications</p> <p style="margin: 0px;">9.4 Graphical Solutions of Autonomous Equations</p> <p style="margin: 0px;"></p> <p style="margin: 0px;">9.5 Systems of Equations and Phase Planes</p> <p style="margin: 0px;"><br></p> <p style="margin: 0px;">10. Infinite Sequences and Series</p> <p style="margin: 0px;">10.1 Sequences</p> <p style="margin: 0px;">10.2 Infinite Series</p> <p style="margin: 0px;">10.3 The Integral Test</p> <p style="margin: 0px;">10.4 Comparison Tests</p> <p style="margin: 0px;">10.5 Absolute Convergence; The Ratio and Root Tests</p> <p style="margin: 0px;">10.6 Alternating Series and Conditional Convergence</p> <p style="margin: 0px;">10.7 Power Series</p> <p style="margin: 0px;">10.8 Taylor and Maclaurin Series</p> <p style="margin: 0px;">10.9 Convergence of Taylor Series</p> <p style="margin: 0px;">10.10 Applications of Taylor Series</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">11. Parametric Equations and Polar Coordinates</p> <p style="margin: 0px;">11.1 Parametrizations of Plane Curves</p> <p style="margin: 0px;">11.2 Calculus with Parametric Curves</p> <p style="margin: 0px;">11.3 Polar Coordinates</p> <p style="margin: 0px;">11.4 Graphing Polar Coordinate Equations</p> <p style="margin: 0px;">11.5 Areas and Lengths in Polar Coordinates</p> <p style="margin: 0px;">11.6 Conic Sections</p> <p style="margin: 0px;">11.7 Conics in Polar Coordinates</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">12. Vectors and the Geometry of Space</p> <p style="margin: 0px;">12.1 Three-Dimensional Coordinate Systems</p> <p style="margin: 0px;">12.2 Vectors</p> <p style="margin: 0px;">12.3 The Dot Product</p> <p style="margin: 0px;">12.4 The Cross Product</p> <p style="margin: 0px;">12.5 Lines and Planes in Space</p> <p style="margin: 0px;">12.6 Cylinders and Quadric Surfaces</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">13. Vector-Valued Functions and Motion in Space</p> <p style="margin: 0px;">13.1 Curves in Space and Their Tangents</p> <p style="margin: 0px;">13.2 Integrals of Vector Functions; Projectile Motion</p> <p style="margin: 0px;">13.3 Arc Length in Space</p> <p style="margin: 0px;">13.4 Curvature and Normal Vectors of a Curve</p> <p style="margin: 0px;">13.5 Tangential and Normal Components of Acceleration</p> <p style="margin: 0px;">13.6 Velocity and Acceleration in Polar Coordinates</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">14. Partial Derivatives</p> <p style="margin: 0px;">14.1 Functions of Several Variables</p> <p style="margin: 0px;">14.2 Limits and Continuity in Higher Dimensions</p> <p style="margin: 0px;">14.3 Partial Derivatives</p> <p style="margin: 0px;">14.4 The Chain Rule</p> <p style="margin: 0px;">14.5 Directional Derivatives and Gradient Vectors</p> <p style="margin: 0px;">14.6 Tangent Planes and Differentials</p> <p style="margin: 0px;">14.7 Extreme Values and Saddle Points</p> <p style="margin: 0px;">14.8 Lagrange Multipliers</p> <p style="margin: 0px;">14.9 Taylor's Formula for Two Variables</p> <p style="margin: 0px;">14.10 Partial Derivatives with Constrained Variables</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">15. Multiple Integrals</p> <p style="margin: 0px;">15.1 Double and Iterated Integrals over Rectangles</p> <p style="margin: 0px;">15.2 Double Integrals over General Regions</p> <p style="margin: 0px;">15.3 Area by Double Integration</p> <p style="margin: 0px;">15.4 Double Integrals in Polar Form</p> <p style="margin: 0px;">15.5 Triple Integrals in Rectangular Coordinates</p> <p style="margin: 0px;">15.6 Applications</p> <p style="margin: 0px;">15.7 Triple Integrals in Cylindrical and Spherical Coordinates</p> <p style="margin: 0px;">15.8 Substitutions in Multiple Integrals</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">16. Integrals and Vector Fields</p> <p style="margin: 0px;">16.1 Line Integrals of Scalar Functions</p> <p style="margin: 0px;">16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux</p> <p style="margin: 0px;">16.3 Path Independence, Conservative Fields, and Potential Functions</p> <p style="margin: 0px;">16.4 Green's Theorem in the Plane</p> <p style="margin: 0px;">16.5 Surfaces and Area</p> <p style="margin: 0px;">16.6 Surface Integrals</p> <p style="margin: 0px;">16.7 Stokes' Theorem</p> <p style="margin: 0px;">16.8 The Divergence Theorem and a Unified Theory</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">17. Second-Order Differential Equations (Online at&nbsp;<a href="http://www.goo.gl/MgDXPY)">www.goo.gl/MgDXPY)</a></p> <p style="margin: 0px;">17.1 Second-Order Linear Equations</p> <p style="margin: 0px;">17.2 Nonhomogeneous Linear Equations</p> <p style="margin: 0px;">17.3 Applications</p> <p style="margin: 0px;">17.4 Euler Equations</p> <p style="margin: 0px;">17.5 Power-Series Solutions</p> <p style="margin: 0px;">&nbsp;</p> <p style="margin: 0px;">Appendices</p> <p style="margin: 0px;">1. Real Numbers and the Real Line</p> <p style="margin: 0px;">2. Mathematical Induction</p> <p style="margin: 0px;">3. Lines, Circles, and Parabolas</p> <p style="margin: 0px;">4. Proofs of Limit Theorems</p> <p style="margin: 0px;">5. Commonly Occurring Limits</p> <p style="margin: 0px;">6. Theory of the Real Numbers</p> <p style="margin: 0px;">7. Complex Numbers</p> <p style="margin: 0px;">8. The Distributive Law for Vector Cross Products</p> <p style="margin: 0px;">9. The Mixed Derivative Theorem and the Increment Theorem</p> <p style="margin: 0px;">&nbsp;</p> <p sty<="" body=""></p>

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Thomas' Calculus