,

Digital Image Processing

E-book Engels 2018 9780135304679
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book.

Introduce your students to image processing with the industry’s most prized text

For 40 years, Image Processing has been the foundational text for the study of digital image processing. The book is suited for students at the college senior and first-year graduate level with prior background in mathematical analysis, vectors, matrices, probability, statistics, linear systems, and computer programming. As in all earlier editions, the focus of this edition of the book is on fundamentals.

The 4th Edition, which celebrates the book’s 40th anniversary, is based on an extensive survey of faculty, students, and independent readers in 150 institutions from 30 countries. Their feedback led to expanded or new coverage of topics such as deep learning and deep neural networks, including convolutional neural nets, the scale-invariant feature transform (SIFT), maximally-stable extremal regions (MSERs), graph cuts, k-means clustering and superpixels, active contours (snakes and level sets), and exact histogram matching.  Major improvements were made in reorganizing the material on image transforms into a more cohesive presentation, and in the discussion of spatial kernels and spatial filtering.  Major revisions and additions were made to examples and homework exercises throughout the book. For the first time, we added MATLAB projects at the end of every chapter, and compiled support packages for you and your teacher containing, solutions, image databases, and sample code.   

The support materials for this title can be found at www.ImageProcessingPlace.com 

Specificaties

ISBN13:9780135304679
Taal:Engels
Bindwijze:e-book

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p style="margin:0px;">1. Introduction</p> <p style="margin:0px;">What Is Digital Image Processing?</p> <p style="margin:0px;">The Origins of Digital Image Processing</p> <p style="margin:0px;">Examples of Fields that Use Digital Image Processing</p> <p style="margin:0px;">Fundamental Steps in Digital Image Processing</p> <p style="margin:0px;">Components of an Image Processing System</p> <p style="margin:0px;"><br></p> <p style="margin:0px;">2. Digital Image Fundamentals</p> <p style="margin:0px;">Elements of Visual Perception</p> <p style="margin:0px;">Light and the Electromagnetic Spectrum. Image Sensing and Acquisition</p> <p style="margin:0px;">Image Sampling and Quantization</p> <p style="margin:0px;">Some Basic Relationships Between Pixels</p> <p style="margin:0px;">An Introduction to the Mathematical Tools Used in Digital Image Processing</p> <p style="margin:0px;"><br></p> <p style="margin:0px;">3. Intensity Transformations and Spatial Filtering</p> <p style="margin:0px;">Background</p> <p style="margin:0px;">Some Basic Intensity Transformation Functions</p> <p style="margin:0px;">Histogram Processing. Fundamentals of Spatial Filtering</p> <p style="margin:0px;">Smoothing Spatial Filters</p> <p style="margin:0px;">Sharpening Spatial Filters</p> <p style="margin:0px;">Combining Spatial Enhancement Methods</p> <p style="margin:0px;">Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering</p> <p style="margin:0px;"><br></p> <p style="margin:0px;">4. Filtering in the Frequency Domain</p> <p style="margin:0px;">Background</p> <p style="margin:0px;">Preliminary Concepts</p> <p style="margin:0px;">Sampling and the Fourier Transform of Sampled Functions</p> <p style="margin:0px;">The Discrete Fourier Transform (DFT) of One Variable</p> <p style="margin:0px;">Extension to Functions of Two Variables</p> <p style="margin:0px;">Some Properties of the 2-D Discrete Fourier Transform</p> <p style="margin:0px;">The Basics of Filtering in the Frequency Domain</p> <p style="margin:0px;">Image Smoothing Using Frequency Domain Filters</p> <p style="margin:0px;">Image Sharpening Using Frequency Domain Filters</p> <p style="margin:0px;">Selective Filtering</p> <p style="margin:0px;">Implementation</p> <p style="margin:0px;"><br></p> <p style="margin:0px;">5. Image Restoration and Reconstruction</p> <p style="margin:0px;">A Model of the Image Degradation/Restoration Process</p> <p style="margin:0px;">Noise Models</p> <p style="margin:0px;">Restoration in the Presence of Noise Only–Spatial Filtering</p> <p style="margin:0px;">Periodic Noise Reduction by Frequency Domain Filtering</p> <p style="margin:0px;">Linear, Position-Invariant Degradations. Estimating the Degradation Function</p> <p style="margin:0px;">Inverse Filtering</p> <p style="margin:0px;">Minimum Mean Square Error (Wiener) Filtering</p> <p style="margin:0px;">Constrained Least Squares Filtering. Geometric Mean Filter</p> <p style="margin:0px;">Image Reconstruction from Projections.</p> <p style="margin:0px;"><br></p> <p style="margin:0px;">6. Color Image Processing</p> <p style="margin:0px;">Color Fundamentals</p> <p style="margin:0px;">Color Models</p> <p style="margin:0px;">Pseudocolor Image Processing</p> <p style="margin:0px;">Basics of Full-Color Image Processing</p> <p style="margin:0px;">Color Transformations. Smoothing and Sharpening</p> <p style="margin:0px;">Image Segmentation Based on Color</p> <p style="margin:0px;">Noise in Color Images</p> <p style="margin:0px;">Color Image Compression</p> <p style="margin:0px;"><br></p> <p style="margin:0px;">7. Wavelets and Multiresolution Processing</p> <p style="margin:0px;">Background</p> <p style="margin:0px;">Multiresolution Expansions</p> <p style="margin:0px;">Wavelet Transforms in One Dimension</p> <p style="margin:0px;">The Fast Wavelet Transform</p> <p style="margin:0px;">Wavelet Transforms in Two</p>

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Digital Image Processing