Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20
, ,

Causal Inference in Statistics

A Primer

Paperback Engels 2016 9781119186847
Op voorraad | Op werkdagen voor 21:00 uur besteld, volgende dag in huis

Samenvatting

Many of the concepts and terminology surrounding modern causal inference can be quite intimidating to the novice. Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision–making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.

Specificaties

ISBN13:9781119186847
Taal:Engels
Bindwijze:paperback
Aantal pagina's:156
Verschijningsdatum:4-3-2016

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Geef uw waardering

Zeer goed Goed Voldoende Matig Slecht

Over Judea Pearl

Judea Pearl is een wereldberoemde computerwetenschapper en filosoof, bekend door zijn grensverleggende werk binnen de kunstmatige intelligentie en het ontwikkelen van Bayesiaanse netwerken (voor de liefhebber). In 2011 won hij de Turing Award, de grootste en belangrijkste prijs in de informatica, daarnaast heeft zijn werk vele andere prijzen gewonnen. Hij is voorzitter van de Daniel Pearl Foundation.

Andere boeken door Judea Pearl

Inhoudsopgave

About the Authors ix
Preface xi
List of Figures xv
About the Companion Website xix

1 Preliminaries: Statistical and Causal Models 1
1.1 Why Study Causation 1
1.2 Simpson s Paradox 1
1.3 Probability and Statistics 7
1.3.1 Variables 7
1.3.2 Events 8
1.3.3 Conditional Probability 8
1.3.4 Independence 10
1.3.5 Probability Distributions 11
1.3.6 The Law of Total Probability 11
1.3.7 Using Bayes Rule 13
1.3.8 Expected Values 16
1.3.9 Variance and Covariance 17
1.3.10 Regression 20
1.3.11 Multiple Regression 22
1.4 Graphs 24
1.5 Structural Causal Models 26
1.5.1 Modeling Causal Assumptions 26
1.5.2 Product Decomposition 29

2 Graphical Models and Their Applications 35
2.1 Connecting Models to Data 35
2.2 Chains and Forks 35
2.3 Colliders 40
2.4 d–separation 45
2.5 Model Testing and Causal Search 48

3 The Effects of Interventions 53
3.1 Interventions 53
3.2 The Adjustment Formula 55
3.2.1 To Adjust or not to Adjust? 58
3.2.2 Multiple Interventions and the Truncated Product Rule 60
3.3 The Backdoor Criterion 61
3.4 The Front–Door Criterion 66
3.5 Conditional Interventions and Covariate–Specific Effects 70
3.6 Inverse Probability Weighing 72
3.7 Mediation 75
3.8 Causal Inference in Linear Systems 78
3.8.1 Structural versus Regression Coefficients 80
3.8.2 The Causal Interpretation of Structural Coefficients 81
3.8.3 Identifying Structural Coefficients and Causal Effect 83
3.8.4 Mediation in Linear Systems 87

4 Counterfactuals and Their Applications 89
4.1 Counterfactuals 89
4.2 Defining and Computing Counterfactuals 91
4.2.1 The Structural Interpretation of Counterfactuals 91
4.2.2 The Fundamental Law of Counterfactuals 93
4.2.3 From Population Data to Individual Behavior An Illustration 94
4.2.4 The Three Steps in Computing Counterfactuals 96
4.3 Nondeterministic Counterfactuals 98
4.3.1 Probabilities of Counterfactuals 98
4.3.2 The Graphical Representation of Counterfactuals 101
4.3.3 Counterfactuals in Experimental Settings 103
4.3.4 Counterfactuals in Linear Models 106
4.4 Practical Uses of Counterfactuals 107
4.4.1 Recruitment to a Program 107
4.4.2 Additive Interventions 109
4.4.3 Personal Decision Making 111
4.4.4 Sex Discrimination in Hiring 113
4.4.5 Mediation and Path–disabling Interventions 114
4.5 Mathematical Tool Kits for Attribution and Mediation 116
4.5.1 A Tool Kit for Attribution and Probabilities of Causation 116
4.5.2 A Tool Kit for Mediation 120
References 127
Index 133

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Causal Inference in Statistics