,

Uncertainty Modeling for Data Mining

A Label Semantics Approach

Gebonden Engels 2014 2014e druk 9783642412509
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning.

Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.

Specificaties

ISBN13:9783642412509
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:420
Uitgever:Springer Berlin Heidelberg
Druk:2014

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Uncertainty Modeling for Data Mining