Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

The Symmetry Perspective

From Equilibrium to Chaos in Phase Space and Physical Space

Paperback Engels 2003 9783764321710
Verwachte levertijd ongeveer 8 werkdagen


The framework of ‘symmetry’ provides an important route between the abstract theory and experimental observations. The book applies symmetry methods to dynamical systems, focusing on bifurcation and chaos theory. Its exposition is organized around a wide variety of relevant applications.

From the reviews:

"[The] rich collection of examples makes the book...extremely useful for motivation and for spreading the ideas to a large Community."--MATHEMATICAL REVIEWS


Aantal pagina's:325
Uitgever:Birkhäuser Basel


Wees de eerste die een lezersrecensie schrijft!

Geef uw waardering

Zeer goed Goed Voldoende Matig Slecht


1. Steady-State Bifurcation.- 1.1. Two Examples.- 1.2. Symmetries of Differential Equations.- 1.3. Liapunov-Schmidt Reduction.- 1.4. The Equivariant Branching Lemma.- 1.5. Application to Speciation.- 1.6. Observational Evidence.- 1.7. Modeling Issues: Imperfect Symmetry.- 1.8. Generalization to Partial Differential Equations.- 2. Linear Stability.- 2.1. Symmetry of the Jacobian.- 2.2. Isotypic Components.- 2.3. General Comments on Stability of Equilibria.- 2.4. Hilbert Bases and Equivariant Mappings.- 2.5. Model-Independent Results for D3Steady-State Bifurcation.- 2.6. Invariant Theory for SN.- 2.7. Cubic Terms in the Speciation Model.- 2.8. Steady-State Bifurcations in Reaction-Diffusion Systems.- 3. Time Periodicity and Spatio-Temporal Symmetry.- 3.1. Animal Gaits and Space-Time Symmetries.- 3.2. Symmetries of Periodic Solutions.- 3.3. A Characterization of Possible Spatio-Temporal Symmetries.- 3.4. Rings of Cells.- 3.5. An Eight-Cell Locomotor CPG Model.- 3.6. Multifrequency Oscillations.- 3.7. A General Definition of a Coupled Cell Network.- 4. Hopf Bifurcation with Symmetry.- 4.1. Linear Analysis.- 4.2. The Equivariant Hopf Theorem.- 4.3. Poincaré-Birkhoff Normal Form.- 4.4. ?(2) Phase-Amplitude Equations.- 4.5. Traveling Waves and Standing Waves.- 4.6. Spiral Waves and Target Patterns.- 4.7. ?(2) Hopf Bifurcation in Reaction-Diffusion Equations.- 4.8. Hopf Bifurcation in Coupled Cell Networks.- 4.9. Dynamic Symmetries Associated to Bifurcation.- 5. Steady-State Bifurcations in Euclidean Equivariant Systems.- 5.1. Translation Symmetry, Rotation Symmetry, and Dispersion Curves.- 5.2. Lattices, Dual Lattices, and Fourier Series.- 5.3. Actions on Kernels and Axial Subgroups.- 5.4. Reaction-Diffusion Systems.- 5.5. Pseudoscalar Equations.- 5.6. The Primary Visual Cortex.- 5.7. The Planar Bénard Experiment.- 5.8. Liquid Crystals.- 5.9. Pattern Selection: Stability of Planforms.- 6. Bifurcation From Group Orbits.- 6.1. The Couette-Taylor Experiment.- 6.2. Bifurcations From Group Orbits of Equilibria.- 6.3. Relative Periodic Orbits.- 6.4. Hopf Bifurcation from Rotating Waves to Quasiperiodic Motion.- 6.5. Modulated Waves in Circular Domains.- 6.6. Spatial Patterns.- 6.7. Meandering of Spiral Waves.- 7. Hidden Symmetry and Genericity.- 7.1. The Faraday Experiment.- 7.2. Hidden Symmetry in PDEs.- 7.3. The Faraday Experiment Revisited.- 7.4. Mode Interactions and Higher-Dimensional Domains.- 7.5. Lapwood Convection.- 7.6. Hemispherical Domains.- 8. Heteroclinic Cycles.- 8.1. The Guckenheimer-Holmes Example.- 8.2. Heteroclinic Cycles by Group Theory.- 8.3. Pipe Systems and Bursting.- 8.4. Cycling Chaos.- 9. Symmetric Chaos.- 9.1. Admissible Subgroups.- 9.2. Invariant Measures and Ergodic Theory.- 9.3. Detectives.- 9.4. Instantaneous and Average Symmetries, and Patterns on Average.- 9.5. Synchrony of Chaotic Oscillations and Bubbling Bifurcations.- 10. Periodic Solutions of Symmetric Hamiltonian Systems.- 10.1. The Equivariant Moser-Weinstein Theorem.- 10.2. Many-Body Problems.- 10.3. Spatio-Temporal Symmetries in Hamiltonian Systems.- 10.4. Poincaré-Birkhoff Normal Form.- 10.5. Linear Stability.- 10.6. Molecular Vibrations.

Managementboek Top 100


Populaire producten



        The Symmetry Perspective