<ul> <li>Related titles</li> <li>List of contributors</li> <li>Woodhead Publishing Series in Electronic and Optical Materials</li> <li>Part One. Properties and materials<ul><li>1. Mechanics of curvature and strain in flexible organic electronic devices<ul><li>1.1. Introduction</li><li>1.2. Stress and strain analyses</li><li>1.3. Failure under tensile stress</li><li>1.4. Failure under compressive stress</li><li>1.5. Mechanical test methods</li><li>1.6. Toward compliant and stretchable electronics</li><li>1.7. Conclusions</li></ul></li><li>2. Structural and electronic properties of fullerene-based organic materials: density functional theory-based calculations<ul><li>2.1. Introduction</li><li>2.2. Theoretical background</li><li>2.3. Structural transformations of fullerenes based on DFT calculations</li><li>2.4. Prototype impurities in fullerene crystals and electronic effects</li><li>2.5. Summary and future trends</li></ul></li><li>3. Hybrid and nanocomposite materials for flexible organic electronics applications<ul><li>3.1. Introduction</li><li>3.2. Production methods</li><li>3.3. Properties</li><li>3.4. Limitations</li><li>3.5. Electronics applications</li><li>3.6. Future trends</li><li>3.7. Sources of further information and advice</li></ul></li><li>4. Organic polymeric semiconductor materials for applications in photovoltaic cells<ul><li>4.1. Introduction</li><li>4.2. Polymeric electron donors for bulk-heterojunction photovoltaic solar cells</li><li>4.3. Fullerene and polymeric-based electron acceptors for bulk heterojunction photovoltaic solar cells</li><li>4.4. Hybrid structures of polymer, copolymer semiconductors with carbon nanostructures</li><li>4.5. Conclusions</li></ul></li></ul></li> <li>Part Two. Technologies<ul><li>5. High-barrier films for flexible organic electronic devices<ul><li>5.1. Introduction</li><li>5.2. Encapsulation of flexible OEs</li><li>5.3. Permeability mechanisms through barrier materials</li><li>5.4. Permeation measurement techniques</li><li>5.5. Advances in high-barrier materials</li><li>5.6. Conclusions</li></ul></li><li>6. Advanced interconnection technologies for flexible organic electronic systems<ul><li>6.1. Introduction</li><li>6.2. Materials and processes</li><li>6.3. Reliability</li><li>6.4. Summary and future trends</li></ul></li><li>7. Roll-to-roll printing and coating techniques for manufacturing large-area flexible organic electronics<ul><li>7.1. Introduction</li><li>7.2. Printing techniques</li><li>7.3. Coating techniques</li><li>7.4. Specialist coating techniques</li><li>7.5. Encapsulation techniques</li><li>7.6. Applications</li><li>7.7. Future trends</li></ul></li><li>8. Integrated printing for 2D/3D flexible organic electronic devices<ul><li>8.1. Introduction</li><li>8.2. Fundamentals of inkjet printing</li><li>8.3. Electronic inks</li><li>8.4. Vertically integrated inkjet-printed electronic passive components</li><li>8.5. Conclusions</li></ul></li><li>9. In situ characterization of organic electronic materials using X-ray techniques<ul><li>9.1. Introduction</li><li>9.2. Grazing incidence X-ray diffraction</li><li>9.3. Temperature-dependent studies</li><li>9.4. In situ X-ray studies</li><li>9.5. Conclusions</li></ul></li><li>10. In-line monitoring and quality control of flexible organic electronic materials<ul><li>10.1. Introduction</li><li>10.2. Fundamentals of spectroscopic ellipsometry</li><li>10.3. Characterization of organic electronic nanomaterials</li><li>10.4. Conclusions and future trends</li></ul></li><li>11. Optimization of active nanomaterials and transparent electrodes using printing and vacuum processes<ul><li>11.1. Introduction</li><li>11.2. Optimization of r2r printed active nanomaterials and electrodes</li><li>11.3. Combination of wet and vacuum techniques for OEs</li><li>11.4. Future trends</li></ul></li><li>12. Laser processing of flexible organic electronic materials<ul><li>12.1. Introduction</li><li>12.2. The physics of laser interaction with thin films</li><li>12.3. Laser systems and sources</li><li>12.4. Beam delivery assembly</li><li>12.5. Laser modification of materials and C surfaces</li><li>12.6. Laser ablation processes</li><li>12.7. Laser printing</li><li>12.8. Conclusions and future trends</li></ul></li><li>13. Flexible organic electronic devices on metal foil substrates for lighting, photovoltaic, and other applications<ul><li>13.1. Introduction</li><li>13.2. Substrate selection</li><li>13.3. Substrate preparation</li><li>13.4. TFTs for displays on metal foil</li><li>13.5. OLED lighting and photovoltaics on metal foil</li><li>13.6. Future trends</li></ul></li></ul></li> <li>Part Three. Applications<ul><li>14. Smart integrated systems and circuits using flexible organic electronics: automotive applications<ul><li>14.1. Introduction</li><li>14.2. Materials for integrated systems</li><li>14.3. Manufacturing processes</li><li>14.4. Automotive applications</li><li>14.5. Conclusions</li></ul></li><li>15. Chemical sensors using organic thin-film transistors (OTFTs)<ul><li>15.1. Introduction</li><li>15.2. Gas and vapour sensors</li><li>15.3. Humidity sensors</li><li>15.4. pH detection</li><li>15.5. Glucose detection</li><li>15.6. Deoxyribonucleic acid detection</li><li>15.7. Conclusions</li></ul></li><li>16. Microfluidic devices using flexible organic electronic materials<ul><li>16.1. Introduction</li><li>16.2. Microfluidics and electronics</li><li>16.3. Materials and fabrication techniques</li><li>16.4. Device examples</li><li>16.5. Summary</li><li>16.6. Future trends</li></ul></li><li>17. Two-terminal organic nonvolatile memory (ONVM) devices<ul><li>17.1. Introduction</li><li>17.2. Carbon nanotube (CNT)-based 2T-ONVM structures</li><li>17.3. Conclusion</li></ul></li><li>18. Printed, flexible thin-film-batteries and other power storage devices<ul><li>18.1. Introduction</li><li>18.2. The development of printed batteries</li><li>18.3. Basic design of printed batteries</li><li>18.4. Printing technologies and challenges</li><li>18.5. Properties of printed batteries</li><li>18.6. Conclusions and future trends</li><li>Appendix: Patent applications on printed batteries</li></ul></li></ul></li> <li>Index</li> <li>Colour section plate captions</li> </ul>