<p>List of contributors </p> <p>Preface </p> <p>Section 1</p> <p>Different kinds of functionalized nanomaterial for</p> <p>industrial use nanomaterials</p> <p>1. Functionalization of nanomaterials for industrial</p> <p>applications: recent and future perspectives </p> <p>Sukanchan Palit and Chaudhery Mustansar Hussain</p> <p>1.1 Introduction </p> <p>1.2 The vision of the study </p> <p>1.3 Nanotrends in industrial development </p> <p>1.4 Potential of nanomaterials </p> <p>1.5 What are functionalized nanomaterials? </p> <p>1.6 The use of functionalized nanomaterials in industry </p> <p>1.7 Current research on nanomaterials </p> <p>1.8 Recent scientific research in the field of functionalized</p> <p>nanomaterials </p> <p>1.9 The scientific vision of energy and environmental</p> <p>sustainability </p> <p>1.10 Recent research in environmental protection and industrial</p> <p>ecology </p> <p>1.11 Integrated water resource management and human factor</p> <p>engineering </p> <p>1.12 Groundwater remediation and nanotechnology </p> <p>1.13 Future research trends in nanotechnology and nanomaterials </p> <p>1.14 Conclusion and future perspectives </p> <p>References </p> <p>Further reading </p> <p>2. Mixed-matrix membranes incorporated with</p> <p>functionalized nanomaterials for water applications </p> <p>Woon-Chan Chong, Chai-Hoon Koo and Woei-Jye Lau</p> <p>2.1 Introduction </p> <p>2.2 Mixed-matrix membranes incorporated with carbon-based</p> <p>nanomaterials </p> <p>2.3 Mixed-matrix membranes incorporated with titania-based</p> <p>nanomaterials </p> <p>2.4 Mixed-matrix membranes incorporated with other</p> <p>nanomaterials </p> <p>2.5 Adsorptive mixed-matrix membranes for heavy-metal removal </p> <p>2.6 Conclusion and future remarks </p> <p>References </p> <p>Section 2</p> <p>Functionalized nanomaterial for catalysis industry</p> <p>3. Photocatalytic oxygen evolution reaction for energy</p> <p>conversion and storage of functional nanomaterials </p> <p>K. Kaviyarasu, C. Maria Magdalane, A. Raja, N. Matinise,</p> <p>N. Mayedwa, N. Mongwaketsi, Douglas Letsholathebe, G.T. Mola,</p> <p>Naif AbdullahAl-Dhabi, Mariadhas Valan Arasu, G. Ramalingam,</p> <p>S.B. Mohamed, Abdulgalim B. Isaev, K. Kanimozhi, A.K.H. Bashir,</p> <p>J. Kennedy and M. Maaza</p> <p>3.1 Introduction </p> <p>3.2 Conclusion </p> <p>References </p> <p>4. Functionalized metal-based nanoelectrocatalysts</p> <p>for water splitting </p> <p>R.M.P.I. Rajakaruna and I.R. Ariyarathna</p> <p>4.1 Introduction </p> <p>4.2 Functionalized nanoelectrocatalysts for HER </p> <p>4.3 OER catalysts </p> <p>4.4 Bifunctional electrocatalysts </p> <p>4.5 Summary </p> <p>References </p> <p>5. Functionalized nanographene for catalysis </p> <p>Santosh Bahadur Singh and Chaudhery Mustansar Hussain</p> <p>5.1 Nanographene: an introduction </p> <p>5.2 Functionalization of nanographene </p> <p>5.3 Catalytic properties and applications of functionalized</p> <p>nanographene </p> <p>5.4 Industrial, environmental, and health issues of nanographene </p> <p>5.5 Conclusions and future aspects </p> <p>References </p> <p>Section 3</p> <p>Functionalized nanomaterials for biomedical,</p> <p>pharmaceutical, agriculture, and agri-food industry</p> <p>Section Functionalized nanomaterial and biology</p> <p>6. Biocompatible nanodelivery systems for the</p> <p>delivery of bioactive compounds </p> <p>H. Turasan and J.L. Kokini</p> <p>6.1 Introduction </p> <p>6.2 Fabrication methods of biopolymer-based nanodelivery</p> <p>systems </p> <p>6.3 Conclusions </p> <p>References </p> <p>7. Biopolymer-based nanomaterials for food, nutrition,</p> <p>and healthcare sectors: an overview on their</p> <p>properties, functions, and applications </p> <p>Mohammad Reza Kasaai</p> <p>7.1 Introduction </p> <p>7.2 Sources, structure, and characteristics </p> <p>7.3 Preparation of biopolymer-based nanomaterials </p> <p>7.4 Applications of biopolymer-based nanomaterials </p> <p>7.5 Conclusions </p> <p>7.6 Future perspectives </p> <p>Funding </p> <p>Conflict of interests </p> <p>References </p> <p>Further reading </p> <p>8. Surface functionalization of PLGA nanoparticles for</p> <p>drug delivery </p> <p>Joana A.D. Sequeira, Irina Pereira, Anto´ nio J. Ribeiro,</p> <p>Francisco Veiga and Ana Cl´audia Santos</p> <p>8.1 Introduction: background and driving forces </p> <p>8.2 Active targeting by surface functionalization of PLGA</p> <p>nanoparticles </p> <p>8.3 Noncovalent functionalization of PLGA nanoparticles </p> <p>8.4 Nucleic acid-functionalized PLGA </p> <p>8.5 Concluding remarks </p> <p>Acknowledgements </p> <p>References </p> <p>9. Biomedical-related applications of functionalized</p> <p>nanomaterials </p> <p>Mafalda R. Almeida, M´ arcia C. Neves, Sergio Morales-Torres,</p> <p>Mara G. Freire, Joaquim L. Faria, Vale´ ria C. Santos-Ebinuma,</p> <p>Cl´audia G. Silva and Ana P.M. Tavares</p> <p>9.1 Introduction </p> <p>9.2 Functionalized nanoparticles in the biopharmaceutical sector </p> <p>9.3 Types and synthesis procedures of functionalized</p> <p>nanomaterials </p> <p>9.4 Immobilization of functionalized nanomaterials in</p> <p>membranes </p> <p>9.5 Functionalized nanoparticles as drug delivery systems </p> <p>9.6 Conclusions and future trends </p> <p>Acknowledgments </p> <p>References </p> <p>10. Functionalized nanomaterials for biomedical and</p> <p>agriculture industries </p> <p>P. Chandra Kanth, Sandeep Kumar Verma and Nidhi Gour</p> <p>10.1 Introduction </p> <p>10.2 Strategies for functionalization of nanomaterials </p> <p>10.3 Functionalized nanomaterials for biomedical and</p> <p>pharmaceutical applications </p> <p>10.4 Application of functionalized nanomaterials in</p> <p>agriculture and agroindustry </p> <p>10.5 Conclusion </p> <p>References </p> <p>Further reading </p> <p>Section 4</p> <p>Functionalized Nanomaterials for Electronics,</p> <p>Electrical and Energy Industry </p> <p>11. Functionalized nanomaterials for electronics and</p> <p>electrical and energy industries </p> <p>Shrabani De and Rashmi Madhuri</p> <p>11.1 Introduction </p> <p>11.2 Industrial applications </p> <p>11.3 Conclusion </p> <p>Author declaration </p> <p>References </p> <p>Section 5</p> <p>Functionalized nanomaterial in</p> <p>environmental industry</p> <p>12. Functionalization of graphene oxide with metal oxide</p> <p>nanomaterials: synthesis and applications for the</p> <p>removal of inorganic, toxic, environmental pollutants</p> <p>from water</p> <p>Shraban Ku Sahoo and G. Hota</p> <p>12.1 Introduction </p> <p>12.2 Preparation of metal oxides functionalized GO</p> <p>nanocomposites </p> <p>12.3 Removal of inorganic pollutants from water using metal</p> <p>oxide-functionalized GO_nanosubstrates </p> <p>12.4 Conclusions </p> <p>References </p> <p>13. Remediation of organic pollutants by potential</p> <p>functionalized nanomaterials</p> <p>Manviri Rani and Uma Shanker</p> <p>13.1 Introduction </p> <p>13.2 Environmental concern of organic pollutants </p> <p>13.3 Green synthesis in FNMs </p> <p>13.4 Necessity of functionalization of NMs for remediation of</p> <p>organic contaminants </p> <p>13.5 Working mechanism of FNPs </p> <p>13.6 Importance of green synthesis in FNMs </p> <p>13.7 Organic dyes </p> <p>13.8 Degradation of OP pesticides by FNMs </p> <p>13.9 Toxicity and functionalized nanoparticles </p> <p>13.10 Conclusions and future perspectives </p> <p>References </p> <p>Further Reading </p> <p>14. Implications of surface coatings on engineered</p> <p>nanomaterials for environmental systems: status quo,</p> <p>challenges, and perspectives</p> <p>Ndeke Musee, Samuel Leareng, Lemme Kebaabetswe, Gosaitse</p> <p>Tubatsi, Ntombikayise Mahaye and Melusi Thwala</p> <p>14.1 Introduction </p> <p>14.2 Implications of coatings for engineered nanomaterial</p> <p>transformation in environmental systems </p> <p>14.3 Influence of engineered nanomaterial coatings on cellular</p> <p>organisms toxicity </p> <p>14.4 Molecular approaches to toxicity of engineered</p> <p>nanomaterials: effects of coatings </p> <p>14.5 Concluding remarks and perspectives </p> <p>References </p> <p>15. Functionalized halloysite nanotubes: an "ecofriendly"</p> <p>nanomaterial in environmental industry </p> <p>Gaurav Pandey, Maithri Tharmavaram and Deepak Rawtani</p> <p>15.1 Introduction </p> <p>15.2 Functionalization techniques for halloysite nanotubes </p> <p>15.3 Applications of functionalized halloysite nanotubes in</p> <p>environmental industry </p> <p>15.4 Conclusion and future prospects </p> <p>References </p> <p>16. Functionalized nanomaterials for chemical sensor</p> <p>applications </p> <p>Sing Muk Ng</p> <p>16.1 Introduction </p> <p>16.2 General characteristics of NMs for chemical-sensing</p> <p>applications </p> <p>16.3 The engineering aspects for functionalization of NMs </p> <p>16.4 Sensing applications </p> <p>16.5 Summary and future perspectives </p> <p>References </p> <p>17. Porous nanocomposites for water treatment: past,</p> <p>present, and future </p> <p>Xiaolin Zhang, Zhixian Li, Ziniu Deng and Bingcai Pan</p> <p>17.1 Introduction </p> <p>17.2 Nanocomposite adsorbents </p> <p>17.3 Nanocomposite membranes for water purification </p> <p>17.4 Nanocomposite catalysts </p> <p>17.5 Summary and perspectives </p> <p>References </p> <p>18. Impact of functionalized nanomaterials toward the</p> <p>environmental remediation: challenges and future</p> <p>needs </p> <p>Aashima and S.K. Mehta</p> <p>18.1 Introduction </p> <p>18.2 Implementation of functionalized nanomaterial:</p> <p>water pollution remediation </p> <p>18.3 Implementation of functionalized nanomaterial: air</p> <p>pollution remediation </p> <p>18.4 Implementation of functionalized nanomaterial: soil</p> <p>pollution remediation </p> <p>18.5 Conclusion </p> <p>18.6 Future scope and challenges </p> <p>18.7 Acknowledgment </p> <p>References </p> <p>Section 6</p> <p>Functionalized nanomaterial in surfaces and</p> <p>coatings (consumer products)</p> <p>19. Natural-based consumer health nanoproducts:</p> <p>medicines, cosmetics, and food supplements </p> <p>Ana Henriques Mota, Alexandra Sousa, Mariana Figueira, Mariana</p> <p>Amaral, Bruno Sousa, Joa˜o Rocha, Elias Fattal, Anto´ nio Jose´ Almeida</p> <p>and Catarina Pinto Reis</p> <p>19.1 Natural sources </p> <p>19.2 Nanotechnology in medicines </p> <p>19.3 Nanoproducts in food supplements </p> <p>19.4 Natural products, nanotechnology, and skin </p> <p>19.5 Conclusions </p> <p>References </p> <p>Section 7</p> <p>Functionalized nanomaterial in textiles industry</p> <p>20. Functional nanofibers: fabrication, functionalization,</p> <p>and potential applications </p> <p>Nabil A. Ibrahim, Moustafa M.G. Fouda and Basma M. Eid</p> <p>20.1 Introduction </p> <p>20.2 Electrospinning </p> <p>20.3 Fabrication steps </p> <p>20.4 Polymers used in electrospun NFs </p> <p>20.5 Functional NFs </p> <p>20.6 Potential applications </p> <p>20.7 Future trends </p> <p>Abbreviations </p> <p>References </p> <p>21. Nanoengineered textiles: from advanced functional</p> <p>nanomaterials to groundbreaking high-performance</p> <p>clothing </p> <p>Clara Pereira, Andre´ M. Pereira, Cristina Freire, Taˆnia V. Pinto,</p> <p>Rui S. Costa and Joana S. Teixeira</p> <p>21.1 Nanotechnology on textiles </p> <p>21.2 Nanoengineered textiles: functionalization processes </p> <p>21.3 Functional nanomaterials from production to</p> <p>textile applications </p> <p>21.4 Future trends and prospects </p> <p>Acknowledgments </p> <p>References </p> <p>Section 8</p> <p>Functionalized nanomaterial in cosmetics industry</p> <p>22. Functional nanomaterials for the cosmetics industry </p> <p>Suman Singh_, Satish Kumar Pandey_ and Neelam Vishwakarma</p> <p>22.1 Introduction </p> <p>22.2 Cosmetics: performance enhancement using</p> <p>nanotechnology </p> <p>22.3 Nanocosmetics: types and applications </p> <p>22.4 Classification of nanocosmetics on the basis of formulation</p> <p>technologies </p> <p>22.5 Nanocosmetics: some popular categories </p> <p>22.6 Nanotechnology for UV protection </p> <p>22.7 Formulation and manufacturing aspects </p> <p>22.8 Guidance documents on nanomaterials in cosmetics </p> <p>22.9 Safety assurance </p> <p>22.10 Impurity profiling </p> <p>22.11 Evaluation of nanomaterial toxicology </p> <p>22.12 Toxicity testing </p> <p>22.13 Conclusions </p> <p>Acknowledgment </p> <p>References </p> <p>23. Naturally derived pyroxene nanomaterials: an ore</p> <p>for wide applications </p> <p>Gerardo Vitale, Ghada Nafie, Afif Hethnawi and Nashaat N. Nassar</p> <p>23.1 Introduction </p> <p>23.2 Synthesis of iron_silicate-based nanomaterials by the</p> <p>hydrothermal method </p> <p>23.3 Conclusions </p> <p>References </p> <p>24. Nanomaterial-based cosmeceuticals </p> <p>Pravin Shende, Drashti Patel and Anjali Takke</p> <p>24.1 Introduction </p> <p>24.2 Nanomaterials in cosmeceuticals </p> <p>24.3 Classification of nanocosmeceuticals </p> <p>24.4 Penetration of nanoparticles </p> <p>24.5 Toxicity of nanocosmeceuticals </p> <p>24.6 Safety of nanocosmeceuticals </p> <p>24.7 Regulations of nanocosmeceuticals </p> <p>24.8 Conclusions and future perspectives </p> <p>References </p> <p>Further reading </p> <p>Section 9</p> <p>Functionalized nanomaterials for aerospace,</p> <p>vehicle and sports industry</p> <p>25. Functionalized nanomaterials for the aerospace, vehicle,</p> <p>and sports industries </p> <p>Sadaf Abbasi, M.H. Peerzada, Sabzoi Nizamuddin and Nabisab</p> <p>Mujawar Mubarak</p> <p>25.1 Introduction </p> <p>25.2 Types of nanomaterials </p> <p>25.3 Properties of functional nanomaterials </p> <p>25.4 Applications of functional nanomaterials </p> <p>25.5 Benefits and challenges </p> <p>25.6 Conclusion </p> <p>References </p> <p>Section 10</p> <p>Functionalized nanomaterial in construction industry</p> <p>26. Nanomaterials for enhancement of thermal energy</p> <p>storage in building and industrial applications </p> <p>Teng Xiong and Kwok Wei Shah</p> <p>26.1 Introduction </p> <p>26.2 Nanometal enhancer </p> <p>26.3 Nanometal oxide enhancer </p> <p>26.4 Nanocarbon enhancer </p> <p>26.5 Conclusions </p> <p>References </p> <p>27. Application of functionalized nanomaterials in asphalt</p> <p>road construction materials </p> <p>Henglong Zhang, Chongzheng Zhu, Chuanwen Wei,</p> <p>Haihui Duan and Jianying Yu</p> <p>27.1 Introduction </p> <p>27.2 Application of organic layered silicate in asphalt </p> <p>27.3 Application of surface modification inorganic nanoparticles in</p> <p>asphalt </p> <p>27.4 Applications of multidimensional nanomaterials in asphalt </p> <p>27.5 Future trends in research of functionalized nanomaterialmodified</p> <p>asphalt </p> <p>References </p> <p>Section 11</p> <p>Functionalized Nanomaterial in Wood &</p> <p>Paper-Related Applications</p> <p>28. Functional Rubber_Clay Nanotube Composites With</p> <p>Sustained Release of Protective Agents </p> <p>Ye Fu, Liqun Zhang and Yuri Lvov</p> <p>28.1 Introduction </p> <p>28.2 Encapsulation and sustained release of chemical agents </p> <p>28.3 Functional halloysite_rubber nanocomposites </p> <p>28.4 Conclusions </p> <p>References </p> <p>Section 12</p> <p>Environmental, Legal, Health and Safety Issues of</p> <p>Functionalized Nanomaterials</p> <p>29. Handbook of surface-functionalized nanomaterials:</p> <p>safety and legal aspects </p> <p>Neil John Hunt</p> <p>29.1 Introduction </p> <p>29.2 Different types of surface modification </p> <p>29.3 Effect of surface on biological mechanisms </p> <p>29.4 Substance-specific examples </p> <p>29.5 Allotropes of carbon </p> <p>29.6 Polymeric nanomaterials </p> <p>29.7 Quantum dots </p> <p>29.8 Inorganic elements and oxides </p> <p>29.9 Regulatory and legal issues that impact surface-functionalized</p> <p>nanomaterials </p> <p>29.10 Current REACH situation with nanomaterials </p> <p>29.11 Board of appeal review </p> <p>29.12 Amendments to the annexes of REACH (2019) </p> <p>29.13 Other EU regulations </p> <p>29.14 Other national regulations that impact nanomaterials </p> <p>29.15 Conclusion </p> <p>References </p> <p>Further reading </p> <p>30. Functional nanomaterials: selected legal and</p> <p>regulatory issues </p> <p>Md. Ershadul Karim</p> <p>30.1 Introduction </p> <p>30.2 Functional nanomaterials: an overview </p> <p>30.3 Functionalized nanomaterials: applications, human health,</p> <p>and environmental concerns </p> <p>30.4 Functionalized nanomaterials: legal and regulatory aspects </p> <p>30.5 Functionalized nanomaterials: highlights of legal and</p> <p>regulatory initiatives </p> <p>30.6 Discussion </p> <p>30.7 Conclusion </p> <p>References </p> <p>31. Functional nanomaterials: selected occupational</p> <p>health and safety concerns </p> <p>Md. Ershadul Karim</p> <p>31.1 Introduction </p> <p>31.2 ENMs and OHS concerns </p> <p>31.3 ENMs and OHS laws: an overview </p> <p>31.4 Initiatives taken by the stakeholders </p> <p>31.5 Evaluation </p> <p>31.6 Conclusion </p> <p>References </p> <p>Index </p> <p>Contents xv</p>