Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20
, ,

Fairness and Machine Learning

Limitations and Opportunities

Gebonden Engels 2024 1e druk 9780262048613
Verkooppositie 4502Hoogste positie: 4502
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning.

Fairness and Machine Learning introduces advanced undergraduate and graduate students to the intellectual foundations of this recently emergent field, drawing on a diverse range of disciplinary perspectives to identify the opportunities and hazards of automated decision-making. It surveys the risks in many applications of machine learning and provides a review of an emerging set of proposed solutions, showing how even well-intentioned applications may give rise to objectionable results. It covers the statistical and causal measures used to evaluate the fairness of machine learning models as well as the procedural and substantive aspects of decision-making that are core to debates about fairness, including a review of legal and philosophical perspectives on discrimination. This incisive textbook prepares students of machine learning to do quantitative work on fairness while reflecting critically on its foundations and its practical utility.

• Introduces the technical and normative foundations of fairness in automated decision-making
• Covers the formal and computational methods for characterizing and addressing problems
• Provides a critical assessment of their intellectual foundations and practical utility
• Features rich pedagogy and extensive instructor resources

Specificaties

ISBN13:9780262048613
Trefwoorden:machine learning
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:320
Uitgever:MIT Press Ltd
Druk:1
Verschijningsdatum:7-1-2024
Hoofdrubriek:IT-management / ICT
ISSN:

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Fairness and Machine Learning