, , , e.a.

Handbook of Modeling High–Frequency Data in Finance

Gebonden Engels 2012 9780470876886
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

CUTTING–EDGE DEVELOPMENTS IN HIGH–FREQUENCY FINANCIAL ECONOMETRICS

In recent years, the availability of high–frequency data and advances in computing have allowed financial practitioners to design systems that can handle and analyze this information. Handbook of Modeling High–Frequency Data in Finance addresses the many theoretical and practical questions raised by the nature and intrinsic properties of this data.

A one–stop compilation of empirical and analytical research, this handbook explores data sampled with high–frequency finance in financial engineering, statistics, and the modern financial business arena. Every chapter uses real–world examples to present new, original, and relevant topics that relate to newly evolving discoveries in high–frequency finance, such as:

Designing new methodology to discover elasticity and plasticity of price evolution

Constructing microstructure simulation models

Calculation of option prices in the presence of jumps and transaction costs

Using boosting for financial analysis and trading

The handbook motivates practitioners to apply high–frequency finance to real–world situations by including exclusive topics such as risk measurement and management, UHF data, microstructure, dynamic multi–period optimization, mortgage data models, hybrid Monte Carlo, retirement, trading systems and forecasting, pricing, and boosting. The diverse topics and viewpoints presented in each chapter ensure that readers are supplied with a wide treatment of practical methods.

Handbook of Modeling High–Frequency Data in Finance is an essential reference for academics and practitioners in finance, business, and econometrics who work with high–frequency data in their everyday work. It also serves as a supplement for risk management and high–frequency finance courses at the upper–undergraduate and graduate levels.

Specificaties

ISBN13:9780470876886
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:456

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Preface xi
<p>Contributors xiii</p>
<p>Part One Analysis of Empirical Data 1</p>
<p>1 Estimation of NIG and VG Models for High Frequency Financial Data 3<br /> Jos&eacute; E. Figueroa–L&oacute;pez, Steven R. Lancette, Kiseop Lee, and Yanhui Mi</p>
<p>1.1 Introduction, 3</p>
<p>1.2 The Statistical Models, 6</p>
<p>1.3 Parametric Estimation Methods, 9</p>
<p>1.4 Finite–Sample Performance via Simulations, 14</p>
<p>1.5 Empirical Results, 18</p>
<p>1.6 Conclusion, 22</p>
<p>References, 24</p>
<p>2 A Study of Persistence of Price Movement using High Frequency Financial Data 27<br /> Dragos Bozdog, Ionut&cedil; Florescu, Khaldoun Khashanah, and Jim Wang</p>
<p>2.1 Introduction, 27</p>
<p>2.2 Methodology, 29</p>
<p>2.3 Results, 35</p>
<p>2.4 Rare Events Distribution, 41</p>
<p>2.5 Conclusions, 44</p>
<p>References, 45</p>
<p>3 Using Boosting for Financial Analysis and Trading 47<br /> Germ&aacute;n Creamer</p>
<p>3.1 Introduction, 47</p>
<p>3.2 Methods, 48</p>
<p>3.3 Performance Evaluation, 53</p>
<p>3.4 Earnings Prediction and Algorithmic Trading, 60</p>
<p>3.5 Final Comments and Conclusions, 66</p>
<p>References, 69</p>
<p>4 Impact of Correlation Fluctuations on Securitized structures 75<br /> Eric Hillebrand, Ambar N. Sengupta, and Junyue Xu</p>
<p>4.1 Introduction, 75</p>
<p>4.2 Description of the Products and Models, 77</p>
<p>4.3 Impact of Dynamics of Default Correlation on</p>
<p>Low–Frequency Tranches, 79</p>
<p>4.4 Impact of Dynamics of Default Correlation on High–Frequency Tranches, 87</p>
<p>4.5 Conclusion, 92</p>
<p>References, 94</p>
<p>5 Construction of Volatility Indices Using A Multinomial Tree&nbsp;Approximation Method 97<br /> Dragos Bozdog, Ionut&cedil; Florescu, Khaldoun Khashanah, and Hongwei Qiu</p>
<p>5.1 Introduction, 97</p>
<p>5.2 New Methodology, 99</p>
<p>5.3 Results and Discussions, 101</p>
<p>5.4 Summary and Conclusion, 110</p>
<p>References, 115</p>
<p>Part Two Long Range Dependence Models 117</p>
<p>6 Long Correlations Applied to the Study of Memory Effects in High Frequency (TICK) Data, the Dow Jones Index, and International Indices 119<br /> Ernest Barany and Maria Pia Beccar Varela</p>
<p>6.1 Introduction, 119</p>
<p>6.2 Methods Used for Data Analysis, 122</p>
<p>6.3 Data, 128</p>
<p>6.4 Results and Discussions, 132</p>
<p>6.5 Conclusion, 150</p>
<p>References, 160</p>
<p>7 Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales 163<br /> Alec N. Kercheval and Yang Liu</p>
<p>7.1 Introduction, 163</p>
<p>7.2 The Skewed t Distributions, 165</p>
<p>7.3 Risk Forecasts on a Fixed Timescale, 176</p>
<p>7.4 Multiple Timescale Forecasts, 185</p>
<p>7.5 Backtesting, 188</p>
<p>7.6 Further Analysis: Long–Term GARCH and Comparisons using Simulated Data, 203</p>
<p>7.7 Conclusion, 216</p>
<p>References, 217</p>
<p>8 Parameter Estimation and Calibration for Long–Memory Stochastic Volatility Models 219<br /> Alexandra Chronopoulou</p>
<p>8.1 Introduction, 219</p>
<p>8.2 Statistical Inference Under the LMSV Model, 222</p>
<p>8.3 Simulation Results, 227</p>
<p>8.4 Application to the S&amp;P Index, 228</p>
<p>8.5 Conclusion, 229</p>
<p>References, 230</p>
<p>Part Three Analytical Results 233</p>
<p>9 A Market Microstructure Model of Ultra High Frequency Trading 235<br /> Carlos A. Ulibarri and Peter C. Anselmo</p>
<p>9.1 Introduction, 235</p>
<p>9.2 Microstructural Model, 237</p>
<p>9.3 Static Comparisons, 239</p>
<p>9.4 Questions for Future Research, 241</p>
<p>References, 242</p>
<p>10 Multivariate Volatility Estimation with High Frequency Data Using Fourier Method 243<br /> Maria Elvira Mancino and Simona Sanfelici</p>
<p>10.1 Introduction, 243</p>
<p>10.2 Fourier Estimator of Multivariate Spot Volatility, 246</p>
<p>10.3 Fourier Estimator of Integrated Volatility in the Presence of Microstructure Noise, 252</p>
<p>10.4 Fourier Estimator of Integrated Covariance in the Presence of Microstructure Noise, 263</p>
<p>10.5 Forecasting Properties of Fourier Estimator, 272</p>
<p>10.6 Application: Asset Allocation, 286</p>
<p>References, 290</p>
<p>11 The "Retirement" Problem 295<br /> Cristian Pasarica</p>
<p>11.1 Introduction, 295</p>
<p>11.2 The Market Model, 296</p>
<p>11.3 Portfolio and Wealth Processes, 297</p>
<p>11.4 Utility Function, 299</p>
<p>11.5 The Optimization Problem in the Case (<sub>t ,T</sub>]&nbsp; 0, 299</p>
<p>11.6 Duality Approach, 300</p>
<p>11.7 Infinite Horizon Case, 305</p>
<p>References, 324</p>
<p>12 Stochastic Differential Equations and Levy Models with Applications to High Frequency Data 327<br /> Ernest Barany and Maria Pia Beccar Varela</p>
<p>12.1 Solutions to Stochastic Differential Equations, 327</p>
<p>12.2 Stable Distributions, 334</p>
<p>12.3 The Levy Flight Models, 336</p>
<p>12.4 Numerical Simulations and Levy Models: Applications to Models Arising in Financial Indices and High Frequency Data, 340</p>
<p>12.5 Discussion and Conclusions, 345</p>
<p>References, 346</p>
<p>13 Solutions to Integro–Differential Parabolic Problem Arising on Financial Mathematics 347<br /> Maria C. Mariani, Marc Salas, and Indranil SenGupta</p>
<p>13.1 Introduction, 347</p>
<p>13.2 Method of Upper and Lower Solutions, 351</p>
<p>13.3 Another Iterative Method, 364</p>
<p>13.4 Integro–Differential Equations in a L&eacute;vy Market, 375</p>
<p>References, 380</p>
<p>14 Existence of Solutions for Financial Models with Transaction Costs and Stochastic Volatility 383<br /> Maria C. Mariani, Emmanuel K. Ncheuguim, and Indranil SenGupta</p>
<p>14.1 Model with Transaction Costs, 383</p>
<p>14.2 Review of Functional Analysis, 386</p>
<p>14.3 Solution of the Problem (14.2) and (14.3) in Sobolev Spaces, 391</p>
<p>14.4 Model with Transaction Costs and Stochastic Volatility, 400</p>
<p>14.5 The Analysis of the Resulting Partial Differential Equation, 408</p>
<p>References, 418</p>
<p>Index 421</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Handbook of Modeling High–Frequency Data in Finance