Microwave Materials and Applications 2V Set
2 Volume Set
Gebonden Engels 2017 9781119208525Samenvatting
The recent rapid progress in wireless telecommunication, including the Internet of Things, 5th generation wireless systems, satellite broadcasting, and intelligent transport systems has increased the need for low–loss dielectric materials and modern fabrication techniques. These materials have excellent electrical, dielectric, and thermal properties and have enormous potential, especially in wireless communication, flexible electronics, and printed electronics.
Microwave Materials and Applications discusses the methods commonly employed for measuring microwave dielectric properties, the various attempts reported to solve problems of materials chemistry and crystal structure, doping, substitution, and composite formation, highlighting the processing techniques, morphology influences, and applications of microwave materials whilst summarizing many of the recent technical research accomplishments in the area of microwave dielectrics and applications
Chapters examine:
Oxide ceramics for dielectric resonators and substrates
HTCC, LTCC and ULTCC tapes for substrates
Polymer ceramic composites for printed circuit boards
Elastomer–ceramic composites for flexible electronics
Dielectric inks
EMI shielding materials
Microwave ferrites
A comprehensive Appendix presents the fundamental properties for more than 4000 low–loss dielectric ceramics, their composition, crystal structure, and their microwave dielectric properties.
Microwave Materials and Applications presents a comprehensive view of all aspects of microwave materials and applications, making it useful for scientists, industrialists, engineers, and students working on current and emerging applications of wireless communications and consumer electronics.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>List of Contributors xv</p>
<p>Series Preface xvii</p>
<p>Preface xix</p>
<p>1. Measurement of Microwave Dielectric Properties and Factors Affecting Them 1<br />M.T. Sebastian, M.A.S. Silva, and A.S.B. Sombra</p>
<p>1.1 Introduction 1</p>
<p>1.2 Permittivity ( r) and quality factor (Q) 2</p>
<p>1.3 Measurement of Microwave Dielectric Properties 7</p>
<p>1.4 Methods of Measurement 8</p>
<p>1.5 Measurement of EMI Shielding Effectiveness 29</p>
<p>1.6 Terahertz and Millimeter Wave Measurements 31</p>
<p>1.7 Measurement of Dielectric Properties of Powder Samples 34</p>
<p>1.8 Estimation of Dielectric Loss by Spectroscopic Methods 35</p>
<p>1.9 Factors Affecting Dielectric Loss 39</p>
<p>1.10 Measurement of Temperature Coefficient of Resonant Frequency 41</p>
<p>1.11 Tuning of the Resonant Frequency 42</p>
<p>References 45</p>
<p>2. Modeling of Microwave Dielectric Properties of Composites 53<br />Marko Tuhkala, Merja Teirikangas, and Jari Juuti</p>
<p>2.1 Introduction 53</p>
<p>2.2 Connectivity 54</p>
<p>2.3 Electrostatic Theory 56</p>
<p>2.4 Mixing Equations 59</p>
<p>2.5 Effect of Porosity 71</p>
<p>2.6 Conclusion 77</p>
<p>References 77</p>
<p>3. Perovskites 81<br />K.P. Surendran and Rick Ubic</p>
<p>3.1 Introduction 81</p>
<p>3.2 Lattice Constant Prediction 83</p>
<p>3.3 Tolerance Factor 84</p>
<p>3.4 Octahedral Tilting 86</p>
<p>3.5 Simple Perovskites 87</p>
<p>3.6 Cation Ordering 89</p>
<p>3.7 Cation Deficient Perovskites 133</p>
<p>3.8 Summary 135</p>
<p>References 136</p>
<p>4. High Permittivity Materials 149<br />Rick Ubic, G. Subodh, and M.T. Sebastian</p>
<p>4.1 Introduction 149</p>
<p>4.2 The BaO Ln2O3 TiO2 System 149</p>
<p>4.3 The Effect of Processing Parameters on Electrical Properties 162</p>
<p>4.4 Titania 164</p>
<p>4.5 Sr1–3x/2CexTiO3 Ceramics 166</p>
<p>4.6 Pbn(Nb1–xTax)O5+n 174</p>
<p>4.7 (Pb1–xCax)(Fe1/2B1/2)O3 [B = Nb, Ta] 185</p>
<p>4.8 Ag(Nb1–xTax)O3 187</p>
<p>4.9 Summary 190</p>
<p>References 190</p>
<p>5. Millimeter–Wave Materials 203<br />Hitoshi Ohsato</p>
<p>5.1 Introduction: New Frontiers of Millimeter–Wave Dielectrics 203</p>
<p>5.2 Dielectric Properties for Millimeter Wave 207</p>
<p>5.3 Candidates of Millimeter–Wave Dielectrics 209</p>
<p>5.4 Specialized Study 212</p>
<p>Acknowledgments 259</p>
<p>References 259</p>
<p>6. Other Important Materials 267<br />M.T. Sebastian and R.C. Pullar</p>
<p>6.1 Spinel 267</p>
<p>6.2 Li2ATi3O8 (A = Mg, Zn) Ceramics 280</p>
<p>6.3 Li2Zn3Ti4O12 289</p>
<p>6.4 Apatites 290</p>
<p>6.5 Alumina 303</p>
<p>6.6 Zirconium Tin Titanate 306</p>
<p>6.7 Dielectric Materials in the BaO TiO2 System 314</p>
<p>6.8 Columbite Niobates (M2+Nb2O6) 318</p>
<p>Acknowledgments 327</p>
<p>References 328</p>
<p>7. Microwave Dielectric Properties of Glasses and Bulk Glass Ceramics 345<br />Martin Letz</p>
<p>7.1 Glasses 345</p>
<p>7.2 Bulk Glass Ceramics 349</p>
<p>References 353</p>
<p>8. High Temperature Cofired Ceramic (HTCC), Low Temperature Cofired Ceramic (LTCC), and Ultralow Temperature Cofired Ceramic (ULTCC) Materials 355<br />M.T. Sebastian and Heli Jantunen</p>
<p>8.1 High Temperature Cofired Ceramics (HTCC) 355</p>
<p>8.2 HTCC Alumina 357</p>
<p>8.3 Aluminium Nitride HTCC 359</p>
<p>8.4 ZrSiO4 361</p>
<p>8.5 Low Temperature Cofired Ceramics (LTCC) 366</p>
<p>8.6 Ultralow Temperature Cofired Ceramics (ULTCC) 395</p>
<p>8.7 Discussion and Conclusion 408</p>
<p>References 411</p>
<p>Index i1</p>
<p>VOLUME II</p>
<p>List of Contributors xv</p>
<p>Series Preface xvii</p>
<p>Preface xix</p>
<p>9. Voltage Tunable Microwave Dielectrics for Frequency and Phase Agile Devices 427<br />K. Sudheendran and K.C. James Raju</p>
<p>9.1 Introduction to Voltage Tunable Materials 427</p>
<p>9.2 Different Classes of Voltage Tunable Materials 428</p>
<p>9.3 Importance of Voltage Tunable Materials in Frequency and Phase Agile Devices 432</p>
<p>9.4 Growth Techniques for Voltage Tunable Thin Films on Various Substrates 434</p>
<p>9.5 Characterization techniques 437</p>
<p>9.6 High–Frequency Characterization 438</p>
<p>9.7 Design and Realization Aspects of Varactors Using Tunable Materials 449</p>
<p>9.8 Conclusions 454</p>
<p>Acknowledgment 454</p>
<p>References 454</p>
<p>10. Dielectric Inks 457<br />J. Varghese and M.T. Sebastian</p>
<p>10.1 Introduction 457</p>
<p>10.2 Methodology 461</p>
<p>10.3 Dielectric Inks and Their Properties 462</p>
<p>10.4 Polymer–Based Dielectric Inks, Properties and Applications 473</p>
<p>10.5 Commercially Available Dielectric Inks, Properties and Applications 475</p>
<p>10.6 Conclusion 475</p>
<p>Acknowledgment 477</p>
<p>References 477</p>
<p>11. Polymer Ceramic Composites for Microwave Applications 481<br />R. Ratheesh and M.T. Sebastian</p>
<p>11.1 Introduction: Microwave Substrates 481</p>
<p>11.2 Types of Polymer Ceramic Composites 483</p>
<p>11.3 Thermoplastic Matrix and Composites 485</p>
<p>11.4 PTFE/Ceramic Composites 489</p>
<p>11.5 Polyethylene Ceramic Composites 502</p>
<p>11.6 Polystyrene Ceramic Composites 507</p>
<p>11.7 Epoxy–Ceramic Composites 510</p>
<p>11.8 Liquid Crystal Polymer (LCP) 513</p>
<p>11.9 Thermal Conductivity 514</p>
<p>11.10 Polymer Nanoceramic Composites 518</p>
<p>11.11 Ultrawideband Antenna Design Using Copper Cladded Ceramic–Filled PTFE Substrates 521</p>
<p>11.12 Conclusion 526</p>
<p>References 527</p>
<p>12. Rubber Ceramic Composites 537<br />M.T. Sebastian and L.K. Namitha</p>
<p>12.1 Introduction 537</p>
<p>12.2 Silicone Rubber 539</p>
<p>12.3 Butyl Rubber (BR) 553</p>
<p>12.4 Fabrication of Flexible Microstrip Antenna 567</p>
<p>12.5 Conclusions 570</p>
<p>References 570</p>
<p>13. Designing of Materials for EMI Shielding Applications 575<br />Swati Varshney and S.K. Dhawan</p>
<p>13.1 Electromagnetic Shielding and Microwave Absorption Mechanism 577</p>
<p>13.2 Shielding Effectiveness (SE) 577</p>
<p>13.3 Measurement of Shielding Effectiveness 578</p>
<p>13.4 Electromagnetic Shielding Materials 581</p>
<p>13.5 New Insight into Designing of Materials for Microwave Shielding 583</p>
<p>13.6 Nanostructured Graphene/Fe3O4 Incorporated Polyaniline for EMI Shielding 584</p>
<p>13.7 Designing of Polypyrrole –Fe2O3 Nanocomposite Wave Absorber 586</p>
<p>13.8 Designing of Conducting Polymer Composite by Incorporating Ferrofluid 590</p>
<p>13.9 Designing of Polypyrrole Aqueous Ferrofluid (PFF) Nanocomposite Microwave Absorber 593</p>
<p>13.10 Conclusions 596</p>
<p>Acknowledgments 598</p>
<p>References 598</p>
<p>14. Microwave Ferrites and Applications 603<br />Vincent G. Harris</p>
<p>14.1 Introduction 603</p>
<p>14.2 Structure, chemistry, magnetism, and gyromagnetic properties 604</p>
<p>14.3 Ferrite Materials Processing for Microwave Applications 611</p>
<p>14.4 Semiconductor Integration of Ferrite Thin and Thick Films for MIC Development 620</p>
<p>14.5 Ferrite Based Microwave Device Development 628</p>
<p>14.6 Outlook 642</p>
<p>References 643</p>
<p>15. Applications of Microwave Dielectrics 653<br />Heike Bartsch, Alexander Schulz, Jens M¨uller, Alexander Ebert, Steffen Spira, Frank Wollenschl¨ager, and Matthias Hein</p>
<p>15.1 General Requirements for Microwave Applications 653</p>
<p>15.2 LTCC Microwave Components and Materials 654</p>
<p>15.3 LTCC Application Examples 666</p>
<p>References 676</p>
<p>16. Applications of Dielectric Resonators 683<br />P. Mohanan and S. Mridula</p>
<p>16.1 Introduction 683</p>
<p>16.2 Dielectric Resonator Antenna (DRA) 684</p>
<p>16.3 Applications of Dielectric Resonator in Microwave Oscillators 698</p>
<p>16.4 Application of Dielectric Resonators in Microwave Filters 703</p>
<p>References 710</p>
<p>Appendix: List of Low–Loss Ceramic Dielectric Materials and Their Properties 715<br />M.T. Sebastian</p>
<p>Index i1</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan