Mathematics for Enzyme Reaction Kinetics and Reactor Performance 2V Set
2 Volume Set
Gebonden Engels 2020 9781119490289Samenvatting
Mathematics for Enzyme Reaction Kinetics and Reactor Performance is the first set in a unique 11 volume–collection on
Enzyme Reaction Engineering. This two volume–set relates specifically to the wide mathematical background required for systematic and rational simulation of both reaction kinetics and reactor performance; and to fully understand and capitalize on the modelling concepts developed. It accordingly reviews basic and useful concepts of Algebra (first volume), and Calculus and Statistics (second volume). A brief overview of such native algebraic entities as scalars, vectors, matrices and determinants constitutes the starting point of the first volume; the major features of germane functions are then addressed. Vector operations ensue, followed by calculation of determinants. Finally, exact methods for solution of selected algebraic equations including sets of linear equations, are considered, as well as numerical methods for utilization at large.
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni– and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni– and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>Series Preface</p>
<p>Preface</p>
<p>Volume One</p>
<p>1. Basic Concepts of Algebra 2</p>
<p>17.1. Scalars, vectors, matrices and determinants 3</p>
<p>17.2. Function features 8</p>
<p>17.2.1. Series 20</p>
<p>17.2.1.1. Arithmetic series 21</p>
<p>17.2.1.2. Geometric series 24</p>
<p>17.2.1.3. Arithmetic/geometric series 28</p>
<p>17.2.2. Multiplication and division of polynomials 34</p>
<p>17.2.2.1. Product 35</p>
<p>17.2.2.2. Quotient 36</p>
<p>17.2.2.3. Factorization 41</p>
<p>17.2.2.4. Splitting 46</p>
<p>17.2.2.5. Power 57</p>
<p>17.2.3. Trigonometric functions 66</p>
<p>17.2.3.1. Definition and major features 67</p>
<p>17.2.3.2. Angle transformation formulae 73</p>
<p>17.2.3.3. Fundamental theorem of trigonometry 91</p>
<p>17.2.3.4. Inverse functions 99</p>
<p>17.2.4. Hyperbolic functions 100</p>
<p>17.2.4.1. Definition and major features 101</p>
<p>17.2.4.2. Argument transformation formulae 107</p>
<p>17.2.4.3. Euler s form of complex numbers 112</p>
<p>17.2.4.4. Inverse functions 114</p>
<p>17.3. Vector operations 120</p>
<p>17.3.1. Addition of vectors 123</p>
<p>17.3.2. Multiplication of scalar by vector 125</p>
<p>17.3.3. Scalar multiplication of vectors 128</p>
<p>17.3.4. Vector multiplication of vectors 140</p>
<p>17.4. Matrix operations 147</p>
<p>17.4.1. Addition of matrices 148</p>
<p>17.4.2. Multiplication of scalar by matrix 150</p>
<p>17.4.3. Multiplication of matrices 153</p>
<p>17.4.4. Transposal of matrices 162</p>
<p>17.4.5. Inversion of matrices 165</p>
<p>17.4.5.1. Full matrix 166</p>
<p>17.4.5.2. Block matrix 172</p>
<p>17.4.6. Combined features 175</p>
<p>17.4.6.1. Symmetric matrix 176</p>
<p>17.4.6.2. Positive semidefinite matrix 178</p>
<p>17.5. Tensor operations 181</p>
<p>17.6. Determinants 187</p>
<p>17.6.1. Definition 188</p>
<p>17.6.2. Calculation 195</p>
<p>17.6.2.1. Laplace s theorem 197</p>
<p>17.6.2.2. Major features 201</p>
<p>17.6.2.3. Tridiagonal matrix 221</p>
<p>17.6.2.4. Block matrix 223</p>
<p>17.6.2.5. Matrix inversion 228</p>
<p>17.6.3. Eigenvalues and –vectors 233</p>
<p>17.6.3.1. Characteristic polynomial 235</p>
<p>17.6.3.2. Cayley & Hamilton s theorem 239</p>
<p>17.7. Solution of algebraic equations250</p>
<p>17.7.1. Linear systems of equations 251</p>
<p>17.7.1.1. Jacobi s method 256</p>
<p>17.7.1.2. Explicitation 268</p>
<p>17.7.1.3. Cramer s rule 269</p>
<p>17.7.1.4. Matrix inversion 273</p>
<p>17.7.2. Quadratic equation 278</p>
<p>17.7.3. Lambert s W function 283</p>
<p>17.7.4. Numerical approaches 288</p>
<p> 17.7.4.1. Double–initial estimate methods 289</p>
<p> 17.7.4.2. Single–initial estimate methods 307</p>
<p>17.8. Further reading 326</p>
<p>Volume Two </p>
<p>1. Basic Concepts of Calculus 1</p>
<p>18.1. Limits, derivatives, integrals and differential equations 2</p>
<p>18.2. Limits and continuity 3</p>
<p>18.2.1. Univariate limit 4</p>
<p>18.2.1.1. Definition 4</p>
<p>18.2.1.2. Basic calculation 9</p>
<p>18.2.2. Multivariate limit 14</p>
<p>18.2.3. Basic theorems on limits 16</p>
<p>18.2.4. Definition of continuity 26</p>
<p>18.2.5. Basic theorems on continuity 29</p>
<p>18.2.5.1. Bolzano s theorem 30</p>
<p>18.2.5.2. Weierstrass theorem 35</p>
<p>18.3. Differentials, derivatives and partial derivatives 38</p>
<p>18.3.1. Differential 39</p>
<p>18.3.2. Derivative 43</p>
<p>18.3.2.1. Definition 43</p>
<p>18.3.2.2. Rules of differentiation of univariate functions 63</p>
<p>18.3.2.3. Rules of differentiation of multivariate functions 85</p>
<p>18.3.2.4. Implicit differentiation 86</p>
<p>18.3.2.5. Parametric differentiation 89</p>
<p>18.3.2.6. Basic theorems of differential calculus 93</p>
<p>18.3.2.7. Derivative of matrix 116</p>
<p>18.3.2.8. Derivative of determinant 123</p>
<p>18.3.3. Dependence between functions 127</p>
<p>18.3.4. Optimization of univariate continuous functions 131</p>
<p>18.3.4.1. Constraint–free 132</p>
<p>18.3.4.2. Subjected to constraints 135</p>
<p>18.3.5. Optimization of multivariate continuous functions 139</p>
<p>18.3.5.1. Constraint–free 139</p>
<p>18.3.5.2. Subjected to constraints 145</p>
<p>18.4. Integrals 146</p>
<p>18.4.1. Univariate integral 149</p>
<p>18.4.1.1. Indefinite integral 149</p>
<p>18.4.1.2. Definite integral 165</p>
<p>18.4.2. Multivariate integral 185</p>
<p>18.4.2.1. Definition 185</p>
<p>18.4.2.2. Basic theorems 191</p>
<p>18.4.2.3. Change of variables 200</p>
<p>18.4.2.4. Differentiation of integral 204</p>
<p>18.4.3. Optimization of single integral 207</p>
<p>18.4.4. Optimization of set of derivatives 217</p>
<p>18.5. Infinite series and integrals 222</p>
<p>18.5.1. Definition and criteria of convergence 223</p>
<p>18.5.1.1. Comparison test 225</p>
<p>18.5.1.2. Ratio test 226</p>
<p>18.5.1.3. D Alembert s test 228</p>
<p>18.5.1.4. Cauchy s integral test 231</p>
<p>18.5.1.5. Leibnitz s test 234</p>
<p>18.5.2. Taylor s series 237</p>
<p>18.5.2.1. Analytical functions 255</p>
<p>18.5.2.2. Euler s infinite product 293</p>
<p>18.5.3. Gamma function and factorial 304</p>
<p>18.5.3.1. Integral definition and major features 305</p>
<p>18.5.3.2. Euler s definition 312</p>
<p>18.5.3.3. Stirling s approximation 319</p>
<p>18.6. Analytical geometry 325</p>
<p>18.6.1. Straight line 326</p>
<p>18.6.2. Simple polygons 329</p>
<p>18.6.3. Conical curves 333</p>
<p>18.6.4. Length of line 340</p>
<p>18.6.5. Curvature of line 353</p>
<p>18.6.6. Area of plane surface 359</p>
<p>18.6.7. Outer area of revolution solid 367</p>
<p>18.6.8. Volume of revolution solid 387</p>
<p>18.7. Transforms 395</p>
<p>18.7.1. Laplace s transform 396</p>
<p>18.7.1.1. Definition 396</p>
<p>18.7.1.2. Major features 411</p>
<p>18.7.1.3. Inversion 427</p>
<p>18.7.2. Legendre s transform 438</p>
<p>18.8. Solution of differential equations 447</p>
<p>18.8.1. Ordinary differential equations 448</p>
<p>18.8.1.1. Single first order 449</p>
<p>18.8.1.2. Single second order 456</p>
<p>18.8.1.3. Linear higher order 522</p>
<p>18.8.2. Partial differential equations 535</p>
<p>18.9. Vector calculus 543</p>
<p>18.9.1. Rectangular coordinates 544</p>
<p>18.9.1.1. Definition and representation 544</p>
<p>18.9.1.2. Definition of nabla operator, Ñ 546</p>
<p>18.9.1.3. Algebraic properties of Ñ 553</p>
<p>18.9.1.4. Multiple products involving Ñ 556</p>
<p>18.9.2. Cylindrical coordinates 588</p>
<p>18.9.2.1. Definition and representation 588</p>
<p>18.9.1.2. Redefinition of nabla operator, Ñ 594</p>
<p>18.9.3. Spherical coordinates 601</p>
<p>18.9.3.1. Definition and representation 601</p>
<p>18.9.3.2. Redefinition of nabla operator, Ñ 615</p>
<p>18.9.4. Curvature of three–dimensional surface 636</p>
<p>18.9.5. Three–dimensional integration 646</p>
<p>18.10. Numerical approaches to integration 650</p>
<p>18.10.1. Calculation of definite integrals 651</p>
<p>18.10.1.1. Zero–th order interpolation 653</p>
<p>18.10.1.2. First and second order interpolation 664</p>
<p>18.10.1.3. Composite methods 693</p>
<p>18.10.1.4. Infinite and multidimensional integrals 699</p>
<p>18.10.2. Integration of differential equations 702</p>
<p>18.10.2.1. Single–step methods 705</p>
<p>18.10.2.2. Multiple–step methods 709</p>
<p>18.10.2.3. Multiple–stage methods 718</p>
<p>18.10.2.4. Integral versus differential equation 734</p>
<p>18.11. Further reading</p>
<p>3. Basic Concepts of Statistics 1</p>
<p>19.1. Continuous probability functions2</p>
<p>19.1.1. Basic statistical descriptors 4</p>
<p>19.1.2. Normal distribution 12</p>
<p>19.1.2.1. Derivation 13</p>
<p>19.1.2.2. Justification 20</p>
<p>19.1.2.3. Operational features 27</p>
<p>19.1.2.4. Moment–generating function 31</p>
<p>19.1.2.5. Standard probability density function 48</p>
<p>19.1.2.6. Central limit theorem 52</p>
<p>19.1.2.7. Standard probability cumulative function 64</p>
<p>19.1.3. Other relevant distributions 68</p>
<p>19.1.3.1. Lognormal distribution 69</p>
<p>19.1.3.2. Chi–square distribution 78</p>
<p>19.1.3.3. Student s t–distribution 94</p>
<p>19.1.3.4. Fisher s F–distribution 112</p>
<p>19.2. Statistical hypothesis testing 147</p>
<p>19.3. Linear regression 156</p>
<p>19.3.1. Parameter fitting 158</p>
<p>19.3.2. Residual characterization 162</p>
<p>19.3.3. Parameter inference 166</p>
<p>19.3.3.1. Multivariate models 166</p>
<p>19.3.3.2. Univariate models 171</p>
<p>19.3.4. Unbiased estimation 175</p>
<p>19.3.4.1. Multivariate models 175</p>
<p>19.3.4.2. Univariate models 179</p>
<p>19.3.5. Prediction inference 189</p>
<p>19.3.6. Multivariate correction 192</p>
<p>19.4. Further reading 207</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan