1. Fundamentals of the Kinetics of Heterogeneous Reaction Systems in Extractive Metallurgy.- 1.1. Elementary Steps.- 1.1.1. Mass Transfer between a Solid Surface and a Fluid.- 1.1.2. Diffusion of Fluid Species through the Pores of a Solid.- 1.1.3. Intrinsic Kinetics of Heterogeneous Reactions on Solid Surfaces.- 1.1.4. Heat Transfer between a Solid Surface and a Moving Fluid Stream.- 1.1.5. Conduction of Heat in Porous Solids.- 1.1.6. Summary.- 1.2. Reaction of a Single Nonporous Particle.- 1.2.1. Reactions in Which No Solid Product Layer Is Formed.- 1.2.2. Reactions in Which a Product Layer Is Formed.- 1.2.3. Nonisothermal Reactions in Shrinking-Unreacted-Core Systems.- 1.2.4. Summary and Comments.- 1.3. Reaction of a Single Porous Particle.- 1.3.1. Reactions in Which No Solid Product Is Formed.- 1.3.2. Reactions in Which a Product Layer Is Formed.- 1.3.3. Concluding Remarks.- 1.4. Reactions between Two Solids Proceeding through Gaseous Intermediates.- 1.4.1. Formulation of Model.- 1.4.2. Results.- 1.4.3. Discussion.- 1.5. Notation.- References.- 2. Rate Processes in Multiparticle Metallurgical Systems.- 2.1. General Approach to Describing Rate Processes in Multiparticle Systems.- 2.1.1. Introduction.- 2.1.2. Motivation.- 2.1.3. Particle Characterization.- 2.1.4. Representation of Property Distributions.- 2.1.5. Population-Balance Framework.- 2.1.6. Application of Population Balance to Extractive Metallurgical Systems.- 2.1.7. Summary and Conclusions.- References.- 2A. Chemical Process Analysis and Design for Multiparticle Systems.- 2A.1. Introduction.- 2A.2. The Concept of General Reactor Scale-up Criteria.- 2A.2.1. Particle Phenomenological Kinetics.- 2A.2.2. Rate-Controlling Steps in Particle Reactions.- 2A.2.3. Particle Size Distribution.- 2A.2.4. Residence Time Distribution in the Reactor.- 2A.3. Computed Dimensionless Design Curves.- 2A.4. Application of F Curves in Process Design.- 2A.4.1. Determining the Kinetic Data.- 2A.4.2. Scale-up.- 2A.4.3. Discussion.- 2A.5. Application Examples.- References.- 3. Hydrometallurgical Processes.- Sec. 3.1. Milton E. Wads worth.- Sec. 3.2. Milton E. Wadsworth.- Sec. 3.3. J. D. Miller.- 3.1. Principles of Leaching (MEW).- 3.1.1. Introduction.- 3.1.2. Heterogeneous Kinetics of Importance in Hydrometallurgy.- 3.1.3. Leaching of Metals.- 3.1.4. Leaching of Sulfides.- 3.1.5. Leaching of Oxides.- 3.2. Dump and In Situ Leaching Practices (MEW).- 3.2.1. Introduction.- 3.2.2. Leaching Systems.- 3.2.3. Rate Processes.- 3.3. Cementation (JDM).- 3.3.1. Electrochemical Reactions.- 3.3.2. Mass Transfer—Hydrodynamics.- 3.3.3. Surface Deposit Effects.- References.- 4. Pyrometallurgical Processes.- Sec. 4.1. S. E. Khalafalla.- Sec. 4.2. J. W. Evans and C.-H. Koo.- Sec. 4.3. H. Y. Sohn and E. T. Turkdogan.- Sec. 4.4. I. B. Cutler.- Sec. 4.5. E. T. Turkdogan.- Sec. 4.6. C.H.Pitt.- 4.1. Roasting as a Unit Process (SEK).- 4.1.1. Introduction.- 4.1.2. Roasting Operations and Furnaces.- 4.1.3. Thermodynamics of Roasting Reactions.- 4.1.4. Gas-Solid Reactions in Roasting.- 4.1.5. Kinetics of Roasting Reactions.- 4.1.6. Selected Cases in Metallurgical Roasting.- 4.2. The Reduction of Metal Oxides (JWE and CHK).- 4.2.1. Introduction.- 4.2.2. Iron Ore Reduction.- 4.2.3. Nickel Oxide Reduction.- 4.2.4. Lead Oxide Reduction.- 4.2.5. Reduction of Other Oxides by Gases.- 4.2.6. Reduction of Oxides by Solid Carbonaceous Materials.- 4.2.7. Direct Reduction Processes.- 4.3. Calcination (HYS and ETT).- 4.4. Sintering (IBC).- 4.4.1. Introduction.- 4.4.2. The Driving Force for Sintering.- 4.4.3. Stages of Sintering.- 4.4.4. Variables That Change Sintering Characteristics of Materials.- 4.4.5. Interaction between Grain Growth and Densification.- 4.4.6. Relationship of Strength to Densification by Sintering.- 4.4.7. Application of Principles of Sintering to Extractive Metallurgical Operations.- 4.5. Smelting and Refining (ETT).- 4.5.1. Introduction.- 4.5.2. Selected Properties of Gases, Liquid Metals, Mattes, and Slags.- 4.5.3. Kinetics of Interfacial Reactions.- 4.5.4. Effects of Gas Blowing and Evolution on Rates of Metal Refining.- 4.5.5. Metal Refining in Vacuo.- 4.5.6. Reactions in Ladle Refining and during Solidification.- 4.5.7. Concluding Remarks.- 4.6. Zone Refining (CHP).- 4.6.1. Background.- 4.6.2. Equilibrium Solidification.- 4.6.3. Mass Transfer in Fractional Solidification.- 4.6.4. Theory of Zone Melting.- 4.6.5. Matter Transport during Zone Refining.- 4.6.6. Summary.- References.- 5. Melting and Solidification in Metals Processing.- 5.1. Introduction.- 5.2. Melting and Solidification Problems Involving One-Component Systems.- 5.2.1. The Formulation of Solidification Problems.- 5.2.2. Solidification Problems in Spherical and in Cylindrical Coordinates.- 5.2.3. Formulation of Melting Problems.- 5.3. Melting and Solidification of Multicomponent Systems.- 5.3.1. Introduction.- 5.3.2. Formulation of Solidification Problems through the Use of an Effective Specific Heat.- 5.3.3. The Modeling of Continuous Casting Systems.- 5.3.4. Scrap Melting in the Basic Oxygen Furnace.- 5.4. Some Techniques of Solution and Computed Results for Melting and Solidification Problems.- 5.4.1. Introduction.- 5.4.2. Analytical Solutions of Melting and Solidification Problems..- 5.4.3. Numerical Methods for the Solution of Melting and Solidification Problems.- 5.5. Concluding Remarks.- Suggested Reading.