,

Mathematics for Informatics and Computer Science

Gebonden Engels 2010 9781848211964
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

How many ways do exist to mix different ingredients, how many chances to win a gambling game, how many possible paths going from one place to another in a network ? To this kind of questions Mathematics applied to computer gives a stimulating and exhaustive answer. This text, presented in three parts (Combinatorics, Probability, Graphs) addresses all those who wish to acquire basic or advanced knowledge in combinatorial theories. It is actually also used as a textbook. 

Basic and advanced theoretical elements are presented through simple applications like the Sudoku game, search engine algorithm and other easy to grasp applications. Through the progression from simple to complex, the teacher acquires knowledge of the state of the art of combinatorial theory. The non conventional simultaneous presentation of algorithms, programs and theory permits a  powerful mixture of theory and practice.

All in all, the originality of this approach gives a refreshing view on combinatorial theory.

Specificaties

ISBN13:9781848211964
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:914

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>General Introduction xxiii</p>
<p>Chapter 1. Some Historical Elements 1</p>
<p>PART 1. COMBINATORICS 17</p>
<p>Part 1. Introduction 19</p>
<p>Chapter 2. Arrangements and Combinations 21</p>
<p>Chapter 3. Enumerations in Alphabetical Order 43</p>
<p>Chapter 4. Enumeration by Tree Structures 63</p>
<p>Chapter 5. Languages, Generating Functions and Recurrences 85</p>
<p>Chapter 6. Routes in a Square Grid 105</p>
<p>Chapter 7. Arrangements and Combinations with Repetitions 119</p>
<p>Chapter 8. Sieve Formula 137</p>
<p>Chapter 9. Mountain Ranges or Parenthesis Words: Catalan Numbers 165</p>
<p>Chapter 10. Other Mountain Ranges 197</p>
<p>Chapter 11. Some Applications of Catalan Numbers and Parenthesis Words 215</p>
<p>Chapter 12. Burnside s Formula 227</p>
<p>Chapter 13. Matrices and Circulation on a Graph 253</p>
<p>Chapter 14. Parts and Partitions of a Set 275</p>
<p>Chapter 15. Partitions of a Number 289</p>
<p>Chapter 16. Flags 305</p>
<p>Chapter 17. Walls and Stacks 315</p>
<p>Chapter 18. Tiling of Rectangular Surfaces using Simple Shapes 331</p>
<p>Chapter 19. Permutations 345</p>
<p>PART 2. PROBABILITY 387</p>
<p>Part 2. Introduction 389</p>
<p>Chapter 20. Reminders about Discrete Probabilities 395</p>
<p>Chapter 21. Chance and the Computer 427</p>
<p>Chapter 22. Discrete and Continuous 447</p>
<p>Chapter 23. Generating Function Associated with a Discrete Random Variable in a Game 469</p>
<p>Chapter 24. Graphs and Matrices for Dealing with Probability Problems 497</p>
<p>Chapter 25. Repeated Games of Heads or Tails 509</p>
<p>Chapter 26. Random Routes on a Graph 535</p>
<p>Chapter 27. Repetitive Draws until the Outcome of a Certain Pattern 565</p>
<p>Chapter 28. Probability Exercises 597</p>
<p>PART 3. GRAPHS 637</p>
<p>Part 3. Introduction 639</p>
<p>Chapter 29. Graphs and Routes 643</p>
<p>Chapter 30. Explorations in Graphs 661</p>
<p>Chapter 31. Trees with Numbered Nodes, Cayley s Theorem and Pr&uuml;fer Code 705</p>
<p>Chapter 32. Binary Trees 723</p>
<p>Chapter 33. Weighted Graphs: Shortest Paths and Minimum Spanning Tree 737</p>
<p>Chapter 34. Eulerian Paths and Cycles, Spanning Trees of a Graph 759</p>
<p>Chapter 35. Enumeration of Spanning Trees of an Undirected Graph 779</p>
<p>Chapter 36. Enumeration of Eulerian Paths in Undirected Graphs 799</p>
<p>Chapter 37. Hamiltonian Paths and Circuits 835</p>
<p>APPENDICES 867</p>
<p>Appendix 1. Matrices 869</p>
<p>Appendix 2. Determinants and Route Combinatorics 885</p>
<p>Bibliography 907</p>
<p>Index 911</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Mathematics for Informatics and Computer Science