Rasch Related Models and Methods for Health Science

Gebonden Engels 2012 9781848212220
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The family of statistical models known as Rasch models started with a simple model for responses to questions in educational tests presented together with a number of related models that the Danish mathematician Georg Rasch referred to as models for measurement. Since the beginning of the 1950s the use of Rasch models has grown and has spread from education to the measurement of health status. This book contains a comprehensive overview of the statistical theory of Rasch models.
Part 1 contains the probabilistic definition of Rasch models, Part 2 describes the estimation of item and person parameters, Part 3 concerns the assessment of the data–model fit of Rasch models, Part 4 contains applications of Rasch models, Part 5 discusses how to develop health–related instruments for Rasch models, and Part 6 describes how to perform Rasch analysis and document results.

Specificaties

ISBN13:9781848212220
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:384
Serie:ISTE

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>I Probabilistic models 1</p>
<p>1 The Rasch model for dichotomous items 3</p>
<p>1.1 Introduction 4</p>
<p>1.1.1 original formulation of the model&nbsp; 4</p>
<p>1.1.2 Modern formulations of the model&nbsp; 7</p>
<p>1.2 Psychometric properties 8</p>
<p>1.2.1 Requirements of IRT models 9</p>
<p>1.2.2 Item Characteristic Curves 10</p>
<p>1.2.3 Guttman errors 10</p>
<p>1.2.4 Implicit assumptions&nbsp; 11</p>
<p>1.3 Statistical properties 11</p>
<p>1.3.1 The distribution of the total score&nbsp; 12</p>
<p>1.3.2 Symmetrical polynomials 13</p>
<p>1.3.3 Test characteristic curve (TCC)&nbsp; 14</p>
<p>1.3.4 Partial credit model parametrization of the score distribution 14</p>
<p>1.3.5 Rasch models for subscores 15</p>
<p>1.4 Inference frames&nbsp; 15</p>
<p>1.5 Specic objectivity 18</p>
<p>1.6 Rasch models as graphical models 19</p>
<p>1.7 Summary 20</p>
<p>2 Rasch models for ordered polytomous items 25</p>
<p>2.1 Introduction 26</p>
<p>2.1.1 Example&nbsp; 26</p>
<p>2.1.2 Ordered categories&nbsp; 26</p>
<p>2.1.3 Properties of the Polytomous Rasch model&nbsp;&nbsp; 30</p>
<p>2.1.4 Assumptions 32</p>
<p>2.2 Derivation from the dichotomous model&nbsp; 32</p>
<p>2.3 Distributions derived from Rasch models&nbsp; 37</p>
<p>2.3.1 The score distribution&nbsp; 37</p>
<p>2.3.2 Interpretation of thresholds in partial credit items and Rasch</p>
<p>scores&nbsp; 39</p>
<p>2.3.3 Conditional distribution of item responses given the total score 39</p>
<p>2.4 Conclusion 39</p>
<p>2.4.1 Frames of inference for Rasch models&nbsp;&nbsp;&nbsp; 40</p>
<p>II Inference in the Rasch model 45</p>
<p>3 Estimation of item parameters 47</p>
<p>3.1 Introduction 48</p>
<p>3.2 Estimation of item parameters&nbsp; 50</p>
<p>3.2.1 Estimation using the conditional likelihood function&nbsp; 50</p>
<p>3.2.2 Pairwise conditional estimation&nbsp; 52</p>
<p>3.2.3 Marginal likelihood function 54</p>
<p>3.2.4 Extended likelihood function 55</p>
<p>3.2.5 Reduced rank parametrization 56</p>
<p>3.2.6 Parameter estimation in more general Rasch models&nbsp; 56</p>
<p>4 Person parameter estimation and measurement in Rasch models 59</p>
<p>4.1 Introduction and notation&nbsp; 60</p>
<p>4.2 Maximum likelihood estimation of person parameters&nbsp;&nbsp; 61</p>
<p>4.3 Item and test information functions 62</p>
<p>4.4 Weighted likelihood estimation of person parameters&nbsp;&nbsp; 63</p>
<p>4.5 Example 63</p>
<p>4.6 Measurement quality 65</p>
<p>4.6.1 Reliability in classical test theory&nbsp; 66</p>
<p>4.6.2 Reliability in Rasch models 67</p>
<p>4.6.3 Expected measurement precision&nbsp; 69</p>
<p>4.6.4 Targeting&nbsp; 69</p>
<p>III Checking the Rasch model 75</p>
<p>5 Itemt statistics 77</p>
<p>5.1 Introduction 78</p>
<p>5.2 Rasch model residuals 79</p>
<p>5.2.1 Notation&nbsp; 79</p>
<p>5.2.2 Individual response residuals: outts and ints&nbsp;&nbsp; 80</p>
<p>5.2.3 Group residuals 85</p>
<p>5.2.4 Group residuals for analysis of homogeneity&nbsp;&nbsp; 85</p>
<p>5.3 Molenaar′s U&nbsp; 87</p>
<p>5.4 Analysis of item { restscore association&nbsp; 88</p>
<p>5.5 Group residuals and analysis of DIF 89</p>
<p>5.6 Kelderman′s conditional likelihood ratio test of no DIF&nbsp;&nbsp; 90</p>
<p>5.7 Test for conditional independence in three–way tables&nbsp;&nbsp; 92</p>
<p>5.8 Discussion and recommendations 93</p>
<p>5.8.1 Technical issues 93</p>
<p>5.8.2 What to do when items do not agree with the Rasch model 95</p>
<p>6 Over–all tests of the Rasch model 99</p>
<p>6.1 Introduction 100</p>
<p>6.2 The conditional likelihood ratio test 100</p>
<p>6.3 Example: Diabetes and Eating habits 102</p>
<p>6.4 Other over–all tests of t 104</p>
<p>7 Local dependence 107</p>
<p>7.1 Introduction 108</p>
<p>7.1.1 Reduced rank parametrization model for sub tests&nbsp; 108</p>
<p>7.1.2 Reliability indexes&nbsp; 109</p>
<p>7.2 Local dependence in Rasch Models 109</p>
<p>7.2.1 Response dependence&nbsp; 110</p>
<p>7.3 E</p>
<p>ects of response dependence on measurement&nbsp;&nbsp;&nbsp; 111</p>
<p>7.4 Diagnosing and detecting response dependence&nbsp;&nbsp;&nbsp; 114</p>
<p>7.4.1 Item t&nbsp; 114</p>
<p>7.4.2 Item residual correlations 116</p>
<p>7.4.3 Sub tests and reliability 118</p>
<p>7.4.4 Estimating the magnitude of response dependence&nbsp; 118</p>
<p>7.4.5 Illustration 119</p>
<p>7.5 Summary 124</p>
<p>8 Two tests of local independence 131</p>
<p>8.1 Introduction 132</p>
<p>8.2 Kelderman′s conditional likelihood ratio test of local independence 132</p>
<p>8.3 Simple conditional independence tests 134</p>
<p>8.4 Discussion and recommendations 136</p>
<p>9 Dimensionality 139</p>
<p>9.1 Introduction 140</p>
<p>9.1.1 Background 140</p>
<p>9.1.2 Multidimensionality in health outcome scales&nbsp;&nbsp; 141</p>
<p>9.1.3 Consequences of multidimensionality&nbsp;&nbsp;&nbsp; 142</p>
<p>9.1.4 Motivating example: the HADS data&nbsp;&nbsp;&nbsp; 142</p>
<p>9.2 Multidimensional models 143</p>
<p>9.2.1 Marginal likelihood function 144</p>
<p>9.2.2 Conditional likelihood function&nbsp; 144</p>
<p>9.3 Diagnostics for detection of multidimensionality&nbsp;&nbsp;&nbsp; 144</p>
<p>9.3.1 Analysis of residuals&nbsp; 145</p>
<p>9.3.2 Observed and expected counts 145</p>
<p>9.3.3 Observed and expected correlations&nbsp;&nbsp;&nbsp; 147</p>
<p>9.3.4 The t–test approach&nbsp; 148</p>
<p>9.3.5 Using reliability estimates as diagnostics of multidimensionality 149</p>
<p>9.3.6 Tests of unidimensionality 150</p>
<p>9.4 Estimating the magnitude of multidimensionality&nbsp;&nbsp; 152</p>
<p>9.5 Implementation&nbsp; 153</p>
<p>9.6 Summary 153</p>
<p>IV Applying the Rasch model 161</p>
<p>10 The polytomous Rasch model and the equating of two instruments163</p>
<p>10.1 Introduction 164</p>
<p>10.2 The polytomous Rasch model&nbsp; 165</p>
<p>10.2.1 Conditional probabilities 166</p>
<p>10.2.2 Conditional estimates of the instrument parameters&nbsp; 167</p>
<p>10.2.3 An illustrative small example 169</p>
<p>10.3 Reparametrization of the thresholds 170</p>
<p>10.3.1 Thresholds reparametrized to two parameters for each instrument170</p>
<p>10.3.2 Thresholds reparametrized with more than two parameters 174</p>
<p>10.3.3 A reparametrization with four parameters&nbsp;&nbsp; 174</p>
<p>10.4 Tests of Fit 176</p>
<p>10.4.1 The conditional test of fit based on cell frequencies&nbsp; 176</p>
<p>10.4.2 The conditional test of fit based on class intervals&nbsp; 177</p>
<p>10.4.3 Graphical test of fit based on total scores&nbsp;&nbsp;&nbsp; 178</p>
<p>10.4.4 Graphical test of fit based on person estimates&nbsp;&nbsp; 179</p>
<p>10.5 Equating procedures 179</p>
<p>10.5.1 Equating using conditioning on total scores&nbsp;&nbsp; 180</p>
<p>10.5.2 Equating through person estimates&nbsp;&nbsp;&nbsp; 180</p>
<p>10.6 Example 180</p>
<p>10.6.1 Person threshold distribution 182</p>
<p>10.6.2 The test of&nbsp;</p>
<p>t between the data and the model&nbsp;&nbsp; 182</p>
<p>10.6.3 Further analysis with the parametrization with two moments</p>
<p>for each instrument&nbsp; 184</p>
<p>10.6.4 Equated scores based on the parametrization with two moments</p>
<p>of the thresholds 190</p>
<p>10.7 Discussion 194</p>
<p>11 A multidimensional latent class Rasch model for the assessment of</p>
<p>the Health–related Quality of Life 199</p>
<p>11.1 Introduction 200</p>
<p>11.2 The dataset 202</p>
<p>11.3 The multidimensional latent class Rasch model&nbsp;&nbsp;&nbsp; 205</p>
<p>11.3.1 Model assumptions&nbsp; 205</p>
<p>11.3.2 Maximum likelihood estimation and model selection&nbsp; 208</p>
<p>11.3.3 Software details 209</p>
<p>11.3.4 Concluding remarks about the model&nbsp;&nbsp;&nbsp; 210</p>
<p>11.4 Inference on the correlation between latent traits&nbsp;&nbsp; 211</p>
<p>11.5 Application results 214</p>
<p>12 Analysis of Rater Agreement by Rasch and IRT models 223</p>
<p>12.1 Introduction 224</p>
<p>12.2 An IRT model for modelling inter–rater agreement&nbsp;&nbsp; 224</p>
<p>12.3 Umbilical artery Doppler velocimetry and perinatal mortality&nbsp; 226</p>
<p>12.4 Quantifying the rater agreement in the Rasch model&nbsp;&nbsp; 227</p>
<p>12.4.1 Fixed Effects Approach&nbsp; 227</p>
<p>12.4.2 Random Effects approach and the median odds ratio&nbsp; 229</p>
<p>12.5 Doppler velocimetry and perinatal mortality&nbsp;&nbsp;&nbsp; 231</p>
<p>12.6 Quantifying the rater agreement in the IRT model&nbsp;&nbsp; 232</p>
<p>12.7 Discussion 233</p>
<p>13 From Measurement to Analysis: two steps or latent regression? 241</p>
<p>13.1 Introduction 242</p>
<p>13.2 Likelihood 243</p>
<p>13.2.1 Two–step model 244</p>
<p>13.2.2 Latent regression model 244</p>
<p>13.3 First step: Measurement models 245</p>
<p>13.4 Statistical Validation of Measurement Instrument&nbsp;&nbsp; 248</p>
<p>13.5 Construction of Scores 251</p>
<p>13.6 Two–step method to Analyze Change between Groups&nbsp;&nbsp; 253</p>
<p>13.6.1 Health related Quality of Life and Housing in Europe&nbsp; 253</p>
<p>13.6.2 Use of Surrogate in an Clinical Oncology trial&nbsp;&nbsp; 254</p>
<p>13.7 Latent Regression to Analyze Change between Groups&nbsp;&nbsp; 257</p>
<p>13.8 Conclusion 259</p>
<p>14 Analysis with repeatedly measured binary item response data byad</p>
<p>hoc Rasch scales 265</p>
<p>14.1 Introduction 266</p>
<p>14.2 The generalized multilevel Rasch model&nbsp; 268</p>
<p>14.2.1 The multilevel form of the conventional Rasch model for binary</p>
<p>items 268</p>
<p>14.2.2 Group comparison and repeated measurement&nbsp;&nbsp; 269</p>
<p>14.2.3 Differential item functioning and local dependence&nbsp; 270</p>
<p>14.3 The analysis of an ad hoc scale 272</p>
<p>14.4 Simulation study&nbsp; 277</p>
<p>14.5 Discussion 283</p>
<p>V Creating, translating, improving Rasch scales 287</p>
<p>15 Writing Health–Related Items for Rasch Models – Patient Reported</p>
<p>Outcome Scales for Health Sciences: From Medical Paternalism to</p>
<p>Patient Autonomy 289</p>
<p>15.1 Introduction 290</p>
<p>15.1.1 The emergence of the biopsychosocial model of illness&nbsp; 290</p>
<p>15.1.2 Changes in the consultation process in general medicine&nbsp; 291</p>
<p>15.2 The use of patient reported outcome questionnaires&nbsp;&nbsp; 292</p>
<p>15.2.1 Defining PRO constructs 293</p>
<p>15.2.2 Quality requirements for PRO questionnaires&nbsp;&nbsp; 298</p>
<p>15.3 Writing new Health–Related Items for new PRO scales&nbsp;&nbsp; 301</p>
<p>15.3.1 Consideration of measurement issues&nbsp;&nbsp;&nbsp; 302</p>
<p>15.3.2 Questionnaire Development 302</p>
<p>15.4 Selecting PROs for a clinical setting 305</p>
<p>15.5 Conclusions 305</p>
<p>16 Adapting patient–reported outcome measures for use in new lan–</p>
<p>guages and cultures 313</p>
<p>16.1 Introduction 314</p>
<p>16.1.1 Background 314</p>
<p>16.1.2 Aim of the adaptation process 315</p>
<p>16.2 Suitability for adaptation 315</p>
<p>16.3 Translation Process 315</p>
<p>16.3.1 Linguistic Issues 316</p>
<p>16.3.2 Conceptual Issues 316</p>
<p>16.3.3 Technical Issues 316</p>
<p>16.4 Translation Methodology 317</p>
<p>16.4.1 Forward–backward translation 317</p>
<p>16.5 Dual–Panel translation 318</p>
<p>16.6 Assessment of psychometric and scaling properties&nbsp;&nbsp; 320</p>
<p>16.6.1 Cognitive debriefing interviews&nbsp; 320</p>
<p>16.6.2 Determining the psychometric properties of the new language</p>
<p>version of the measure&nbsp; 322</p>
<p>16.6.3 Practice Guidelines&nbsp; 323</p>
<p>17 Improving items that do not fit the Rasch model 329</p>
<p>17.1 Introduction 330</p>
<p>17.2 The Rasch model and the graphical log linear Rasch model&nbsp; 330</p>
<p>17.3 The scale improvement strategy 332</p>
<p>17.3.1 Choice of modificational action&nbsp; 335</p>
<p>17.3.2 Result of applying the scale improvement strategy&nbsp; 339</p>
<p>17.4 Application of the strategy to the Physical Functioning Scale of the</p>
<p>SF–36 340</p>
<p>17.4.1 Results of the GLLRM&nbsp; 340</p>
<p>17.4.2 Results of the subject matter analysis&nbsp;&nbsp;&nbsp; 341</p>
<p>17.4.3 Suggestions according to the strategy&nbsp;&nbsp;&nbsp; 342</p>
<p>17.5 Closing remark&nbsp; 345</p>
<p>VI Analyzing and reporting Rasch models 349</p>
<p>18 Software and program for Rasch Analysis 351</p>
<p>18.1 Introduction 352</p>
<p>18.2 Stand alone softwares packages 352</p>
<p>18.2.1 WINSTEPS 352</p>
<p>18.2.2 RUMM&nbsp; 353</p>
<p>18.2.3 Conquest&nbsp; 353</p>
<p>18.2.4 DIGRAM&nbsp; 354</p>
<p>18.3 Implementations in standard software 355</p>
<p>18.3.1 SAS macro for MML estimation: %ANAQOL&nbsp;&nbsp; 355</p>
<p>18.3.2 SAS Macros based on CML 356</p>
<p>18.3.3 eRm : an R Package&nbsp; 356</p>
<p>18.4 Fitting the Rasch model in SAS 356</p>
<p>18.4.1 Simulation of Rasch dichotomous items&nbsp;&nbsp;&nbsp; 356</p>
<p>18.4.2 MML Estimation of Rasch parameters using Proc NLMIXED 357</p>
<p>18.4.3 MML Estimation of Rasch parameters using Proc GLIMMIX 358</p>
<p>18.4.4 CML Estimation of Rasch parameters using Proc GENMOD 358</p>
<p>18.4.5 JML Estimation of Rasch parameters using Proc LOGISTIC 359</p>
<p>18.4.6 Loglinear Rasch model Estimation of Rasch parameters using</p>
<p>Proc Logistic 360</p>
<p>18.4.7 Results&nbsp; 360</p>
<p>19 Reporting a Rasch analysis 363</p>
<p>19.1 Introduction 364</p>
<p>19.1.1 Objectives&nbsp; 364</p>
<p>19.1.2 Factors impacting a Rasch analysis report&nbsp;&nbsp; 364</p>
<p>19.1.3 The role of the substantive theory of the latent variable&nbsp; 366</p>
<p>19.1.4 The frame of reference&nbsp; 367</p>
<p>19.2 Suggested Elements 367</p>
<p>19.2.1 Construct: definition and operationalisation of the latent variable367</p>
<p>19.2.2 Response format and scoring 368</p>
<p>19.2.3 Sample and sampling design 368</p>
<p>19.2.4 Data 369</p>
<p>19.2.5 Measurement model and technical aspects&nbsp;&nbsp; 370</p>
<p>19.2.6 Fit analysis 370</p>
<p>19.2.7 Response scale suitability 371</p>
<p>19.2.8 Item fit assessment&nbsp; 372</p>
<p>19.2.9 Person fit assessment&nbsp; 372</p>
<p>19.2.10 Information 373</p>
<p>19.2.11Validated scale 374</p>
<p>19.2.12 Application and usefulness 375</p>
<p>19.2.13Further issues 376</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Rasch Related Models and Methods for Health Science