Multiscales Geomechanics: From Soil to Engineering Projects
From Soil to Engineering Projects
Gebonden Engels 2011 9781848212466Samenvatting
This book addresses the latest issues in multiscale geomechanics. Written by leading experts in the field as a tribute to Jean Biarez (1927–2006), it can be of great use and interest to researchers and engineers alike.
A brief introduction describes how a major school of soil mechanics came into being through the exemplary teaching by one man. Biarez′s life–long work consisted of explaining the elementary mechanisms governing soil constituents in order to enhance understanding of the underlying scientific laws which control the behavior of constructible sites and to incorporate these scientific advancements into engineering practices.
He innovated a multiscale approach of passing from the discontinuous medium formed by individual grains to an equivalent continuous medium. The first part of the book examines the behavior of soils at the level of their different constituents and at the level of their interaction. Behavior is then treated at the scale of the soil sample.
The second part deals with soil mechanics from the vantage point of the construction project. It highlights Biarez′s insightful adoption of the Finite Element Codes and illustrates, through numerous construction examples, his methodology and approach based on the general framework he constructed for soil behavior, constantly enriched by comparing in situ measurements with calculated responses of geostructures.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>Acknowledgments xv</p>
<p>Chapter 1. Jean Biarez: His Life and Work 1<br /> Jean–Louis BORDES, Jean–Louis FAVRE and Daniel GRIMM</p>
<p>1.1. Early years and arrival in Grenoble 1</p>
<p>1.2. From Grenoble to Paris 4</p>
<p>1.3. The major research interests of Jean Biarez 8</p>
<p>1.4. Research and teaching 9</p>
<p>1.5. Conclusion 13</p>
<p>Chapter 2. From Particle to Material Behavior: the Paths Chartered by Jean Biarez 15<br /> Bernard CAMBOU and Cécile NOUGUIER–LEHON</p>
<p>2.1. Introduction 15</p>
<p>2.2. The available tools, the variables analyzed and limits of the proposed analyses 16</p>
<p>2.3. Analysis of geometric anisotropy 18</p>
<p>2.4. Analysis of the distribution of contact forces in a granular material 21</p>
<p>2.5. Analysis of local arrays 24</p>
<p>2.6. Particle breakage 27</p>
<p>2.7. Conclusion 32</p>
<p>2.8. Bibliography 32</p>
<p>Chapter 3. Granular Materials in Civil Engineering: Recent Advances in the Physics of Their Mechanical Behavior and Applications to Engineering Works 35<br /> Etienne FROSSARD</p>
<p>3.1. Behavior resulting from energy dissipation by friction 37</p>
<p>3.1.1. Introduction 37</p>
<p>3.1.2. Fundamentals 38</p>
<p>3.1.3. Main practical consequences 43</p>
<p>3.1.4. Conclusions 52</p>
<p>3.2. Influence of grain breakage on the behavior of granular materials 53</p>
<p>3.2.1. Introduction to the grain breakage phenomenon 53</p>
<p>3.2.2. Scale effect in shear strength 56</p>
<p>3.3. Practical applications to construction design 63</p>
<p>3.3.1. A new method for rational assessment of rockfill shear strength envelope 63</p>
<p>3.3.2. Incidence of scale effect on rockfill slope stability 65</p>
<p>3.3.3. Scale effects on deformation features 70</p>
<p>3.4. Conclusions 78</p>
<p>3.5. Bibliography 79</p>
<p>Chapter 4. Waste Rock Behavior at High Pressures: Dimensioning High Waste Rock Dumps 83<br /> Edgar BARD, María EUGENIA ANABALÓN and José CAMPAÑA</p>
<p>4.1. Introduction 83</p>
<p>4.2. Development of new laboratory equipment for testing coarse materials 84</p>
<p>4.2.1. Triaxial and oedometric equipment at the IDIEM 85</p>
<p>4.3. Mining rock waste 86</p>
<p>4.3.1. In situ grain size distribution 86</p>
<p>4.3.2. Analyzed waste rock 87</p>
<p>4.4. Characterization of mechanical behavior of the waste rock 88</p>
<p>4.4.1. Oedometric tests 88</p>
<p>4.4.2. Triaxial tests 89</p>
<p>4.4.3. Oedometric test results 90</p>
<p>4.4.4. Triaxial test results 94</p>
<p>4.5. Evolution of density 102</p>
<p>4.6. Stability analysis and design considerations 104</p>
<p>4.7. Operation considerations 106</p>
<p>4.7.1. Basal drainage system 106</p>
<p>4.7.2. Water management 107</p>
<p>4.7.3. Foundation conditions 107</p>
<p>4.7.4. Effects of rain and snow 108</p>
<p>4.7.5. Effects of in situ leaching on waste rock 108</p>
<p>4.7.6. Designing for closure 109</p>
<p>4.8. Conclusions 109</p>
<p>4.9. Acknowledgements 110</p>
<p>4.10. Bibliography 110</p>
<p>Chapter 5. Models by Jean Biarez for the Behavior of Clean Sands and Remolded Clays at Large Strains 113<br /> Jean–Louis FAVRE and Mahdia HATTAB</p>
<p>5.1. Introduction 113</p>
<p>5.2. Biarez s model for the oedometer test 115</p>
<p>5.3. Perfect plasticity state and critical void ratio 118</p>
<p>5.4. Normally and overconsolidated isotropic loading 122</p>
<p>5.4.1. Analogy between sands and clays 122</p>
<p>5.4.2. Normally consolidated state (ISL) 123</p>
<p>5.4.3. Overconsolidated state (Cs) 124</p>
<p>5.5. The drained triaxial path for sands and clays 126</p>
<p>5.5.1. The reference behavior 126</p>
<p>5.5.2. The mathematical model 127</p>
<p>5.6. The undrained triaxial path for sands 128</p>
<p>5.6.1. Simplified Roscoe formula for undrained consolidated soils 129</p>
<p>5.6.2. Modeling of the maxima under the right M on the plan q p′ 130</p>
<p>5.7. Standard behavior for undrained sands 132</p>
<p>5.7.1. Normalization by the theoretical overconsolidation stress p′iC 132</p>
<p>5.7.2. Perfect plasticity normalization of the curves in the (q 1) plane and pore pressure variation 133</p>
<p>5.7.3. Initial stress p′0 normalization in the (q p) plane 133</p>
<p>5.8. The triaxial behavior of lumpy sands 134</p>
<p>5.8.1. Lump sands 134</p>
<p>5.8.2. The Roscoe model applied to lump sands 135</p>
<p>5.8.3. Synthesis of several lump sand behaviors 136</p>
<p>5.9. A new model to analyze the oedometer s path 138</p>
<p>5.9.1. Burland s model 138</p>
<p>5.9.2. Comparison of models and mixed model 141</p>
<p>5.9.3. Burland s model in (IL log ′v) Biarez s space 144</p>
<p>5.10. Destructuration of clayey sediments 144</p>
<p>5.11. Conclusion 145</p>
<p>5.12. Examples of manuscript notes 147</p>
<p>5.13. Bibliography 149</p>
<p>Chapter 6. The Concept of Effective Stress in Unsaturated Soils 153<br /> Said TAIBI, Jean–Marie FLEUREAU, Sigit HADIWARDOYO, Hanène SOULI and António GOMES CORREIA</p>
<p>6.1. Introduction 153</p>
<p>6.2. Microstructural model for unsaturated porous media 160</p>
<p>6.3. Material and methods 164</p>
<p>6.3.1. Material and preparation of samples 164</p>
<p>6.3.2. Experimental devices and test procedures 165</p>
<p>6.3.3. Normalization of data 170</p>
<p>6.4. Experimental results 171</p>
<p>6.4.1. Isotropic compression paths 171</p>
<p>6.4.2. Deviatoric compression paths 72</p>
<p>6.4.3. Small strain behavior 173</p>
<p>6.5. Interpretation of results using the effective stress concept 174</p>
<p>6.5.1. Interpretation of large strain triaxial tests 175</p>
<p>6.5.2. Interpretation of small strain modulus measurements 176</p>
<p>6.6. Conclusions 177</p>
<p>6.7. Acknowledgements 178</p>
<p>6.8. Bibliography 178</p>
<p>Chapter 7. A Microstructural Model for Soils and Granular Materials 183<br /> Pierre–Yves HICHER</p>
<p>7.1. Introduction 183</p>
<p>7.2. The micro–structural model 185</p>
<p>7.2.1. Inter–particle behavior 186</p>
<p>7.2.2. Stress strain relationship 189</p>
<p>7.2.3. Model parameters 190</p>
<p>7.3. Results of numerical simulation on Hostun sand 191</p>
<p>7.3.1. Drained triaxial tests 191</p>
<p>7.3.2. Undrained triaxial tests 195</p>
<p>7.4. Model extension to clayey materials 196</p>
<p>7.4.1. Remolded clays 198</p>
<p>7.4.2. Natural clays 200</p>
<p>7.5. Unsaturated granular materials 204</p>
<p>7.6. Summary and conclusion 214</p>
<p>7.7. Bibliography 216</p>
<p>Chapter 8. Modeling Landslides with a Material Instability Criterion 221<br /> Florent PRUNIER, Sylvain LIGNON, Farid LAOUAFA and Félix DARVE</p>
<p>8.1. Introduction 221</p>
<p>8.2. Study of the second–order work criterion 223</p>
<p>8.2.1. Analytical study 223</p>
<p>8.2.2. Physical interpretation 227</p>
<p>8.3. Petacciato landslide modeling 229</p>
<p>8.3.1. Site presentation 229</p>
<p>8.3.2. Description of the model used 231</p>
<p>8.3.3. Landslide computation 234</p>
<p>8.4. Conclusion 238</p>
<p>8.5. Bibliography 240</p>
<p>Chapter 9. Numerical Modeling: An Efficient Tool for Analyzing the Behavior of Constructions 243<br /> Arezou MODARESSI–FARAHMAND–RAZAVI</p>
<p>9.1. Notations 243</p>
<p>9.2. Introduction 247</p>
<p>9.3. Modeling soil behavior 248</p>
<p>9.3.1. Main characteristics of the soil s mechanical behavior 248</p>
<p>9.3.2. Constitutive models used for computation 253</p>
<p>9.3.3. Simplified model 254</p>
<p>9.3.4. Generalizing the simplified model 262</p>
<p>9.3.5. Mechanical behavior of non–saturated soil 265</p>
<p>9.3.6. Loading/unloading definition in plasticity 272</p>
<p>9.3.7. Multimechanism model 274</p>
<p>9.4. Parameter identification strategy for the ECP model 275</p>
<p>9.4.1. Classification and identification of the ECP model parameters 276</p>
<p>9.4.2. Directly measurable parameters 279</p>
<p>9.4.3. Parameters that are not directly measurable 288</p>
<p>9.4.4. Parameters defining the initial state 290</p>
<p>9.4.5. Application of parameter identification strategy 293</p>
<p>9.5. Influence of constitutive behavior on structural response 299</p>
<p>9.5.1. Retaining walls 299</p>
<p>9.5.2. Vertically loaded piles 304</p>
<p>9.5.3. Earth and rockfill dams 312</p>
<p>9.6. Conclusions 318</p>
<p>9.7. Acknowledgments 319</p>
<p>9.8. Appendix 319</p>
<p>9.9. Bibliography 323</p>
<p>Chapter 10. Evaluating Seismic Stability of Embankment Dams 333<br /> Jean–Jacques FRY</p>
<p>10.1. Introduction 333</p>
<p>10.1.1. A tribute to Jean Biarez 333</p>
<p>10.1.2. Definitions 334</p>
<p>10.2. Observed seismic performance 335</p>
<p>10.2.1. Earthquake performance of gravity dams 335</p>
<p>10.2.2. Earthquake performance of buttress dams 336</p>
<p>10.2.3. Earthquake performance of arch dams 337</p>
<p>10.2.4. Earthquake performance of hydraulic fills 338</p>
<p>10.2.5. Earthquake performance of tailing dams 339</p>
<p>10.2.6. Earthquake performance of road embankments and levees 339</p>
<p>10.2.7. Earthquake performance of river hydroelectric embankments 339</p>
<p>10.2.8. Earthquake performance of small earth dams 340</p>
<p>10.2.9. Earthquake performance of large earth dams 342</p>
<p>10.2.10. Earthquake performance of large zoned dams with rockfill 344</p>
<p>10.2.11. Earthquake performance of concrete face rockfill dams 344</p>
<p>10.2.12. Dynamic performance of physical models 345</p>
<p>10.2.13. Assessment of seismic damage on dams 345</p>
<p>10.2.14. Major seismic damage of large concrete dams 346</p>
<p>10.2.15. Seismic damage of large embankment dams 347</p>
<p>10.2.16. Delayed or indirect consequences of an earthquake 347</p>
<p>10.3. Method for analyzing seismic risk 348</p>
<p>10.3.1. Seismic classification of dams in France 348</p>
<p>10.4. Evaluation of seismic hazard 350</p>
<p>10.4.1. Scenarios for dimensioning a particular situation 350</p>
<p>10.4.2. Choice of seismic levels 350</p>
<p>10.4.3. Choice of the seismic characteristics 351</p>
<p>10.4.4. Choice of accelerographs 352</p>
<p>10.5. Re–evaluation of seismic stability 355</p>
<p>10.5.1. Maximum risk associated with seismic loading: liquefaction 355</p>
<p>10.5.2. A recommended step–by–step methodology 357</p>
<p>10.5.3. Identification 357</p>
<p>10.5.4. Pseudo–static analysis of stability 358</p>
<p>10.5.5. Pseudo–static analysis of displacement 358</p>
<p>10.5.6. Analysis of the liquefaction risk 362</p>
<p>10.5.7. Coupled non–linear analysis 365</p>
<p>10.5.8. Analysis of post–seismic stability 367</p>
<p>10.5.9. Assessment 367</p>
<p>10.6. Semi–coupled modeling of liquefaction 368</p>
<p>10.6.1. Objectives 368</p>
<p>10.6.2. Constitutive model 368</p>
<p>10.6.3. Failure criterion 369</p>
<p>10.6.4. Shear strain law 370</p>
<p>10.6.5. Volumetric strain law: liquefaction 372</p>
<p>10.6.6. Model implementation 373</p>
<p>10.6.7. Model qualification in the case of the San Fernando Dam failure 373</p>
<p>10.6.8. Model application to fluvial dikes 380</p>
<p>10.7. Bibliography 387</p>
<p>List of Authors 393</p>
<p>Index 395</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan