Multiscales Geomechanics: From Soil to Engineering Projects

From Soil to Engineering Projects

Gebonden Engels 2011 9781848212466
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This book addresses the latest issues in multiscale geomechanics. Written by leading experts in the field as a tribute to Jean Biarez (1927–2006), it can be of great use and interest to researchers and engineers alike.

A brief introduction describes how a major school of soil mechanics came into being through the exemplary teaching by one man. Biarez′s life–long work consisted of explaining the elementary mechanisms governing soil constituents in order to enhance understanding of the underlying scientific laws which control the behavior of constructible sites and to incorporate these scientific advancements into engineering practices.

He innovated a multiscale approach of passing from the discontinuous medium formed by individual grains to an equivalent continuous medium. The first part of the book examines the behavior of soils at the level of their different constituents and at the level of their interaction. Behavior is then treated at the scale of the soil sample.

The second part deals with soil mechanics from the vantage point of the construction project. It highlights Biarez′s insightful adoption of the Finite Element Codes and illustrates, through numerous construction examples, his methodology and approach based on the general framework he constructed for soil behavior, constantly enriched by comparing in situ measurements with calculated responses of geostructures.

Specificaties

ISBN13:9781848212466
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:412
Serie:ISTE

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Preface  xi
<p>Acknowledgments&nbsp; xv</p>
<p>Chapter 1. Jean Biarez: His Life and Work&nbsp; 1<br /> Jean–Louis BORDES, Jean–Louis FAVRE and Daniel GRIMM</p>
<p>1.1. Early years and arrival in Grenoble&nbsp; 1</p>
<p>1.2. From Grenoble to Paris&nbsp; 4</p>
<p>1.3. The major research interests of Jean Biarez&nbsp; 8</p>
<p>1.4. Research and teaching&nbsp;&nbsp; 9</p>
<p>1.5. Conclusion&nbsp; 13</p>
<p>Chapter 2. From Particle to Material Behavior: the Paths Chartered by Jean Biarez 15<br /> Bernard CAMBOU and C&eacute;cile NOUGUIER–LEHON</p>
<p>2.1. Introduction 15</p>
<p>2.2. The available tools, the variables analyzed and limits of the proposed analyses 16</p>
<p>2.3. Analysis of geometric anisotropy&nbsp; 18</p>
<p>2.4. Analysis of the distribution of contact forces in a granular material 21</p>
<p>2.5. Analysis of local arrays&nbsp; 24</p>
<p>2.6. Particle breakage&nbsp; 27</p>
<p>2.7. Conclusion&nbsp; 32</p>
<p>2.8. Bibliography&nbsp; 32</p>
<p>Chapter 3. Granular Materials in Civil Engineering: Recent Advances in the Physics of Their Mechanical Behavior and Applications to Engineering Works&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 35<br /> Etienne FROSSARD</p>
<p>3.1. Behavior resulting from energy dissipation by friction&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 37</p>
<p>3.1.1. Introduction 37</p>
<p>3.1.2. Fundamentals&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 38</p>
<p>3.1.3. Main practical consequences 43</p>
<p>3.1.4. Conclusions&nbsp;&nbsp; 52</p>
<p>3.2. Influence of grain breakage on the behavior of granular materials 53</p>
<p>3.2.1. Introduction to the grain breakage phenomenon&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 53</p>
<p>3.2.2. Scale effect in shear strength 56</p>
<p>3.3. Practical applications to construction design&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 63</p>
<p>3.3.1. A new method for rational assessment of rockfill shear strength envelope&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 63</p>
<p>3.3.2. Incidence of scale effect on rockfill slope stability&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 65</p>
<p>3.3.3. Scale effects on deformation features&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 70</p>
<p>3.4. Conclusions 78</p>
<p>3.5. Bibliography&nbsp; 79</p>
<p>Chapter 4. Waste Rock Behavior at High Pressures: Dimensioning High Waste Rock Dumps&nbsp;&nbsp; 83<br /> Edgar BARD, Mar&iacute;a EUGENIA ANABAL&Oacute;N and Jos&eacute; CAMPA&Ntilde;A</p>
<p>4.1. Introduction 83</p>
<p>4.2. Development of new laboratory equipment for testing coarse materials 84</p>
<p>4.2.1. Triaxial and oedometric equipment at the IDIEM 85</p>
<p>4.3. Mining rock waste&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 86</p>
<p>4.3.1. In situ grain size distribution 86</p>
<p>4.3.2. Analyzed waste rock&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 87</p>
<p>4.4. Characterization of mechanical behavior of the waste rock 88</p>
<p>4.4.1. Oedometric tests&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 88</p>
<p>4.4.2. Triaxial tests&nbsp;&nbsp; 89</p>
<p>4.4.3. Oedometric test results 90</p>
<p>4.4.4. Triaxial test results&nbsp;&nbsp; 94</p>
<p>4.5. Evolution of density&nbsp; 102</p>
<p>4.6. Stability analysis and design considerations&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 104</p>
<p>4.7. Operation considerations&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 106</p>
<p>4.7.1. Basal drainage system 106</p>
<p>4.7.2. Water management&nbsp;&nbsp; 107</p>
<p>4.7.3. Foundation conditions&nbsp;&nbsp; 107</p>
<p>4.7.4. Effects of rain and snow&nbsp;&nbsp;&nbsp;&nbsp; 108</p>
<p>4.7.5. Effects of in situ leaching on waste rock&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 108</p>
<p>4.7.6. Designing for closure&nbsp; 109</p>
<p>4.8. Conclusions 109</p>
<p>4.9. Acknowledgements&nbsp; 110</p>
<p>4.10. Bibliography&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 110</p>
<p>Chapter 5. Models by Jean Biarez for the Behavior of Clean Sands and Remolded Clays at Large Strains 113<br /> Jean–Louis FAVRE and Mahdia HATTAB</p>
<p>5.1. Introduction 113</p>
<p>5.2. Biarez s model for the oedometer test&nbsp; 115</p>
<p>5.3. Perfect plasticity state and critical void ratio&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 118</p>
<p>5.4. Normally and overconsolidated isotropic loading&nbsp; 122</p>
<p>5.4.1. Analogy between sands and clays&nbsp; 122</p>
<p>5.4.2. Normally consolidated state (ISL)&nbsp; 123</p>
<p>5.4.3. Overconsolidated state (Cs)&nbsp;&nbsp;&nbsp; 124</p>
<p>5.5. The drained triaxial path for sands and clays&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 126</p>
<p>5.5.1. The reference behavior 126</p>
<p>5.5.2. The mathematical model&nbsp;&nbsp;&nbsp; 127</p>
<p>5.6. The undrained triaxial path for sands 128</p>
<p>5.6.1. Simplified Roscoe formula for undrained consolidated soils&nbsp;&nbsp; 129</p>
<p>5.6.2. Modeling of the maxima under the right M on the plan q p′&nbsp; 130</p>
<p>5.7. Standard behavior for undrained sands 132</p>
<p>5.7.1. Normalization by the theoretical overconsolidation stress p′iC&nbsp; 132</p>
<p>5.7.2. Perfect plasticity normalization of the curves in the (q 1) plane and pore pressure variation&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 133</p>
<p>5.7.3. Initial stress p′0 normalization in the (q p) plane&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 133</p>
<p>5.8. The triaxial behavior of lumpy sands&nbsp;&nbsp;&nbsp; 134</p>
<p>5.8.1. Lump sands&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 134</p>
<p>5.8.2. The Roscoe model applied to lump sands 135</p>
<p>5.8.3. Synthesis of several lump sand behaviors 136</p>
<p>5.9. A new model to analyze the oedometer s path&nbsp; 138</p>
<p>5.9.1. Burland s model&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 138</p>
<p>5.9.2. Comparison of models and mixed model&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 141</p>
<p>5.9.3. Burland s model in (IL log ′v) Biarez s space&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 144</p>
<p>5.10. Destructuration of clayey sediments 144</p>
<p>5.11. Conclusion&nbsp;&nbsp; 145</p>
<p>5.12. Examples of manuscript notes&nbsp;&nbsp;&nbsp; 147</p>
<p>5.13. Bibliography&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 149</p>
<p>Chapter 6. The Concept of Effective Stress in Unsaturated Soils 153<br /> Said TAIBI, Jean–Marie FLEUREAU, Sigit HADIWARDOYO, Han&egrave;ne SOULI and Ant&oacute;nio GOMES CORREIA</p>
<p>6.1. Introduction 153</p>
<p>6.2. Microstructural model for unsaturated porous media 160</p>
<p>6.3. Material and methods&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 164</p>
<p>6.3.1. Material and preparation of samples&nbsp; 164</p>
<p>6.3.2. Experimental devices and test procedures&nbsp;&nbsp; 165</p>
<p>6.3.3. Normalization of data 170</p>
<p>6.4. Experimental results&nbsp; 171</p>
<p>6.4.1. Isotropic compression paths&nbsp;&nbsp; 171</p>
<p>6.4.2. Deviatoric compression paths 72</p>
<p>6.4.3. Small strain behavior&nbsp;&nbsp;&nbsp;&nbsp; 173</p>
<p>6.5. Interpretation of results using the effective stress concept&nbsp;&nbsp;&nbsp;&nbsp; 174</p>
<p>6.5.1. Interpretation of large strain triaxial tests&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 175</p>
<p>6.5.2. Interpretation of small strain modulus measurements&nbsp;&nbsp;&nbsp;&nbsp; 176</p>
<p>6.6. Conclusions 177</p>
<p>6.7. Acknowledgements 178</p>
<p>6.8. Bibliography&nbsp;&nbsp;&nbsp;&nbsp; 178</p>
<p>Chapter 7. A Microstructural Model for Soils and Granular Materials&nbsp; 183<br /> Pierre–Yves HICHER</p>
<p>7.1. Introduction 183</p>
<p>7.2. The micro–structural model&nbsp;&nbsp;&nbsp;&nbsp; 185</p>
<p>7.2.1. Inter–particle behavior&nbsp;&nbsp;&nbsp; 186</p>
<p>7.2.2. Stress strain relationship 189</p>
<p>7.2.3. Model parameters&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 190</p>
<p>7.3. Results of numerical simulation on Hostun sand&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 191</p>
<p>7.3.1. Drained triaxial tests&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 191</p>
<p>7.3.2. Undrained triaxial tests&nbsp;&nbsp;&nbsp;&nbsp; 195</p>
<p>7.4. Model extension to clayey materials 196</p>
<p>7.4.1. Remolded clays&nbsp;&nbsp; 198</p>
<p>7.4.2. Natural clays&nbsp;&nbsp;&nbsp; 200</p>
<p>7.5. Unsaturated granular materials&nbsp;&nbsp;&nbsp; 204</p>
<p>7.6. Summary and conclusion&nbsp;&nbsp;&nbsp;&nbsp; 214</p>
<p>7.7. Bibliography&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 216</p>
<p>Chapter 8. Modeling Landslides with a Material Instability Criterion 221<br /> Florent PRUNIER, Sylvain LIGNON, Farid LAOUAFA and F&eacute;lix DARVE</p>
<p>8.1. Introduction 221</p>
<p>8.2. Study of the second–order work criterion&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 223</p>
<p>8.2.1. Analytical study 223</p>
<p>8.2.2. Physical interpretation 227</p>
<p>8.3. Petacciato landslide modeling&nbsp; 229</p>
<p>8.3.1. Site presentation&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 229</p>
<p>8.3.2. Description of the model used&nbsp;&nbsp; 231</p>
<p>8.3.3. Landslide computation&nbsp; 234</p>
<p>8.4. Conclusion&nbsp; 238</p>
<p>8.5. Bibliography&nbsp;&nbsp; 240</p>
<p>Chapter 9. Numerical Modeling: An Efficient Tool for Analyzing the Behavior of Constructions&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 243<br /> Arezou MODARESSI–FARAHMAND–RAZAVI</p>
<p>9.1. Notations 243</p>
<p>9.2. Introduction 247</p>
<p>9.3. Modeling soil behavior 248</p>
<p>9.3.1. Main characteristics of the soil s mechanical behavior&nbsp;&nbsp;&nbsp; 248</p>
<p>9.3.2. Constitutive models used for computation 253</p>
<p>9.3.3. Simplified model&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 254</p>
<p>9.3.4. Generalizing the simplified model&nbsp; 262</p>
<p>9.3.5. Mechanical behavior of non–saturated soil 265</p>
<p>9.3.6. Loading/unloading definition in plasticity 272</p>
<p>9.3.7. Multimechanism model&nbsp;&nbsp;&nbsp;&nbsp; 274</p>
<p>9.4. Parameter identification strategy for the ECP model&nbsp;&nbsp; 275</p>
<p>9.4.1. Classification and identification of the ECP model parameters 276</p>
<p>9.4.2. Directly measurable parameters 279</p>
<p>9.4.3. Parameters that are not directly measurable&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 288</p>
<p>9.4.4. Parameters defining the initial state 290</p>
<p>9.4.5. Application of parameter identification strategy&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 293</p>
<p>9.5. Influence of constitutive behavior on structural response 299</p>
<p>9.5.1. Retaining walls&nbsp;&nbsp;&nbsp;&nbsp; 299</p>
<p>9.5.2. Vertically loaded piles 304</p>
<p>9.5.3. Earth and rockfill dams&nbsp;&nbsp;&nbsp;&nbsp; 312</p>
<p>9.6. Conclusions 318</p>
<p>9.7. Acknowledgments&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 319</p>
<p>9.8. Appendix&nbsp; 319</p>
<p>9.9. Bibliography&nbsp; 323</p>
<p>Chapter 10. Evaluating Seismic Stability of Embankment Dams&nbsp;&nbsp;&nbsp; 333<br /> Jean–Jacques FRY</p>
<p>10.1. Introduction 333</p>
<p>10.1.1. A tribute to Jean Biarez 333</p>
<p>10.1.2. Definitions&nbsp;&nbsp;&nbsp; 334</p>
<p>10.2. Observed seismic performance 335</p>
<p>10.2.1. Earthquake performance of gravity dams 335</p>
<p>10.2.2. Earthquake performance of buttress dams&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 336</p>
<p>10.2.3. Earthquake performance of arch dams&nbsp;&nbsp;&nbsp;&nbsp; 337</p>
<p>10.2.4. Earthquake performance of hydraulic fills&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 338</p>
<p>10.2.5. Earthquake performance of tailing dams&nbsp; 339</p>
<p>10.2.6. Earthquake performance of road embankments and levees&nbsp;&nbsp; 339</p>
<p>10.2.7. Earthquake performance of river hydroelectric embankments 339</p>
<p>10.2.8. Earthquake performance of small earth dams&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 340</p>
<p>10.2.9. Earthquake performance of large earth dams&nbsp; 342</p>
<p>10.2.10. Earthquake performance of large zoned dams with rockfill 344</p>
<p>10.2.11. Earthquake performance of concrete face rockfill dams 344</p>
<p>10.2.12. Dynamic performance of physical models&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 345</p>
<p>10.2.13. Assessment of seismic damage on dams 345</p>
<p>10.2.14. Major seismic damage of large concrete dams 346</p>
<p>10.2.15. Seismic damage of large embankment dams&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 347</p>
<p>10.2.16. Delayed or indirect consequences of an earthquake&nbsp;&nbsp;&nbsp;&nbsp; 347</p>
<p>10.3. Method for analyzing seismic risk 348</p>
<p>10.3.1. Seismic classification of dams in France 348</p>
<p>10.4. Evaluation of seismic hazard 350</p>
<p>10.4.1. Scenarios for dimensioning a particular situation&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 350</p>
<p>10.4.2. Choice of seismic levels 350</p>
<p>10.4.3. Choice of the seismic characteristics&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 351</p>
<p>10.4.4. Choice of accelerographs&nbsp;&nbsp;&nbsp; 352</p>
<p>10.5. Re–evaluation of seismic stability&nbsp;&nbsp; 355</p>
<p>10.5.1. Maximum risk associated with seismic loading: liquefaction 355</p>
<p>10.5.2. A recommended step–by–step methodology&nbsp; 357</p>
<p>10.5.3. Identification&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 357</p>
<p>10.5.4. Pseudo–static analysis of stability 358</p>
<p>10.5.5. Pseudo–static analysis of displacement&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 358</p>
<p>10.5.6. Analysis of the liquefaction risk&nbsp; 362</p>
<p>10.5.7. Coupled non–linear analysis 365</p>
<p>10.5.8. Analysis of post–seismic stability 367</p>
<p>10.5.9. Assessment&nbsp; 367</p>
<p>10.6. Semi–coupled modeling of liquefaction&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 368</p>
<p>10.6.1. Objectives&nbsp; 368</p>
<p>10.6.2. Constitutive model&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 368</p>
<p>10.6.3. Failure criterion&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 369</p>
<p>10.6.4. Shear strain law&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 370</p>
<p>10.6.5. Volumetric strain law: liquefaction&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 372</p>
<p>10.6.6. Model implementation&nbsp;&nbsp;&nbsp;&nbsp; 373</p>
<p>10.6.7. Model qualification in the case of the San Fernando Dam failure&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 373</p>
<p>10.6.8. Model application to fluvial dikes&nbsp; 380</p>
<p>10.7. Bibliography&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 387</p>
<p>List of Authors&nbsp;&nbsp; 393</p>
<p>Index 395</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Multiscales Geomechanics: From Soil to Engineering Projects