, ,

Data Mining and Machine Learning in Building Energy Analysis – Towards High Performance Computing

Towards High Performance Computing

Gebonden Engels 2016 9781848214224
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Focusing on up–to–date artificial intelligence models to solve building energy problems,
Artificial Intelligence for Building Energy Analysis reviews recently developed models for solving these issues, including detailed and simplified engineering methods, statistical methods, and artificial intelligence methods. The text also simulates energy consumption profiles for single and multiple buildings. Based on these datasets, Support Vector Machine (SVM) models are trained and tested to do the prediction. Suitable for novice, intermediate, and advanced readers, this is a vital resource for building designers, engineers, and students.

Specificaties

ISBN13:9781848214224
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:186

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface ix</p>
<p>Introduction&nbsp; xi</p>
<p>Chapter 1. Overview of Building Energy Analysis 1</p>
<p>1.1. Introduction 1</p>
<p>1.2. Physical models 3</p>
<p>1.3. Gray models 6</p>
<p>1.4. Statistical models 6</p>
<p>1.5. Artificial intelligence models 8</p>
<p>1.5.1. Neural networks&nbsp; 8</p>
<p>1.5.2. Support vector machines 13</p>
<p>1.6. Comparison of existing models&nbsp; 14</p>
<p>1.7. Concluding remarks . 16</p>
<p>Chapter 2. Data Acquisition for Building Energy Analysis 17</p>
<p>2.1. Introduction&nbsp; 17</p>
<p>2.2. Surveys or questionnaires 18</p>
<p>2.3. Measurements 21</p>
<p>2.4. Simulation 25</p>
<p>2.4.1. Simulation software 26</p>
<p>2.4.2. Simulation process&nbsp; 28</p>
<p>2.5. Data uncertainty&nbsp; 34</p>
<p>2.6. Calibration 35</p>
<p>2.7. Concluding remarks&nbsp; 37</p>
<p>Chapter 3. Artificial Intelligence Models 39</p>
<p>3.1. Introduction&nbsp; 39</p>
<p>3.2. Artificial neural networks 40</p>
<p>3.2.1. Single–layer perceptron 41</p>
<p>3.2.2. Feed forward neural network 43</p>
<p>3.2.3. Radial basis functions network 44</p>
<p>3.2.4. Recurrent neural network 47</p>
<p>3.2.5. Recursive deterministic perceptron 49</p>
<p>3.2.6. Applications of neural networks 51</p>
<p>3.3. Support vector machines 53</p>
<p>3.3.1. Support vector classification 54</p>
<p>3.3.2. –support vector regression 59</p>
<p>3.3.3. One–class support vector machines 62</p>
<p>3.3.4. Multiclass support vector machines 63</p>
<p>3.3.5. v–support vector machines 64</p>
<p>3.3.6. Transductive support vector machines 65</p>
<p>3.3.7. Quadratic problem solvers . 67</p>
<p>3.3.8. Applications of support vector machines 75</p>
<p>3.4. Concluding remarks&nbsp; 76</p>
<p>Chapter 4. Artificial Intelligence for Building Energy Analysis 79</p>
<p>4.1. Introduction&nbsp; 79</p>
<p>4.2. Support vector machines for building energy prediction&nbsp; 80</p>
<p>4.2.1. Energy prediction definition 80</p>
<p>4.2.2. Practical issues 81</p>
<p>4.2.3. Support vector machines for prediction 85</p>
<p>4.3. Neural networks for fault detection and diagnosis 91</p>
<p>4.3.1. Description of faults&nbsp; 94</p>
<p>4.3.2. RDP in fault detection 95</p>
<p>4.3.3. RDP in fault diagnosis 100</p>
<p>4.4. Concluding remarks 102</p>
<p>Chapter 5. Model Reduction for Support Vector Machines 103</p>
<p>5.1. Introduction&nbsp; 103</p>
<p>5.2. Overview of model reduction 104</p>
<p>5.2.1. Wrapper methods 105</p>
<p>5.2.2. Filter methods 106</p>
<p>5.2.3. Embedded methods 107</p>
<p>5.3. Model reduction for energy consumption 108</p>
<p>5.3.1. Introduction 108</p>
<p>5.3.2. Algorithm 109</p>
<p>5.3.3. Feature set description 111</p>
<p>5.4. Model reduction for single building energy 112</p>
<p>5.4.1. Feature set selection&nbsp; 112</p>
<p>5.4.2. Evaluation in experiments&nbsp; 114</p>
<p>5.5. Model reduction for multiple buildings energy 116</p>
<p>5.6. Concluding remarks&nbsp; 119</p>
<p>Chapter 6. Parallel Computing for Support Vector Machines 121</p>
<p>6.1. Introduction&nbsp; 121</p>
<p>6.2. Overview of parallel support vector machines 122</p>
<p>6.3. Parallel quadratic problem solver&nbsp; 123</p>
<p>6.4. MPI–based parallel support vector machines&nbsp; 127</p>
<p>6.4.1. Message passing interface programming model&nbsp; 127</p>
<p>6.4.2. Pisvm&nbsp; 129</p>
<p>6.4.3. Psvm&nbsp; 130</p>
<p>6.5. MapReduce–based parallel support vector machines&nbsp; 130</p>
<p>6.5.1. MapReduce programming model&nbsp; 131</p>
<p>6.5.2. Caching technique 133</p>
<p>6.5.3. Sparse data representation 133</p>
<p>6.5.4. Comparison of MRPsvm with Pisvm&nbsp; 134</p>
<p>6.6. MapReduce–based parallel –support vector regression 138</p>
<p>6.6.1. Implementation aspects&nbsp; 138</p>
<p>6.6.2. Energy consumption datasets 139</p>
<p>6.6.3. Evaluation for building energy prediction&nbsp; 140</p>
<p>6.7. Concluding remarks&nbsp; 142</p>
<p>Summary and Future of Building Energy Analysis&nbsp; 145</p>
<p>Bibliography 149</p>
<p>Index 163</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Data Mining and Machine Learning in Building Energy Analysis – Towards High Performance Computing