, ,

Benefits of Bayesian Network Models

Paperback Engels 2016 9781848219922
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field.

Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today′s engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty.

This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi–state systems and dynamic systems.

Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.

Specificaties

ISBN13:9781848219922
Taal:Engels
Bindwijze:paperback
Aantal pagina's:148

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Foreword by J.–F. Aubry ix</p>
<p>Foreword by L. Portinale&nbsp; xiii</p>
<p>Acknowledgments&nbsp; xv</p>
<p>Introduction xvii</p>
<p>Part 1. Bayesian Networks 1</p>
<p>Chapter 1. Bayesian Networks: a Modeling Formalism for System Dependability&nbsp; 3</p>
<p>1.1. Probabilistic graphical models: BN&nbsp; 5</p>
<p>1.1.1. BN: a formalism to model dependability&nbsp; 5</p>
<p>1.1.2. Inference mechanism&nbsp; 7</p>
<p>1.2. Reliability and joint probability distributions 8</p>
<p>1.2.1. Multi–state system example&nbsp; 8</p>
<p>1.2.2. Joint distribution&nbsp; 9</p>
<p>1.2.3. Reliability computing&nbsp; 9</p>
<p>1.2.4. Factorization 10</p>
<p>1.3. Discussion and conclusion 14</p>
<p>Chapter 2. Bayesian Network: Modeling Formalism of the Stucture Function of Boolean Systems 17</p>
<p>2.1. Introduction 17</p>
<p>2.2. BN models in the Boolean case&nbsp; 19</p>
<p>2.2.1. BN model from cut–sets&nbsp; 20</p>
<p>2.2.2. BN model from tie–sets 23</p>
<p>2.2.3. BN model from a top–down approach 25</p>
<p>2.2.4. BN model of a bowtie 26</p>
<p>2.3. Standard Boolean gates CPT&nbsp; 29</p>
<p>2.4. Non–deterministic CPT 31</p>
<p>2.5. Industrial applications&nbsp; 38</p>
<p>2.6. Conclusion&nbsp; 41</p>
<p>Chapter 3. Bayesian Network: Modeling Formalism of the Structure Function of Multi–State Systems&nbsp; 43</p>
<p>3.1. Introduction 43</p>
<p>3.2. BN models in the multi–state case 43</p>
<p>3.2.1. BN model of multi–state systems from tie–sets 44</p>
<p>3.2.2. BN model of multi–state systems from cut–sets&nbsp; 49</p>
<p>3.2.3. BN model of multi–state systems from functional and dysfunctional analysis 52</p>
<p>3.3. Non–deterministic CPT 58</p>
<p>3.4. Industrial applications&nbsp; 59</p>
<p>3.5. Conclusion&nbsp; 62</p>
<p>Part 2. Dynamic Bayesian Networks 65</p>
<p>Chapter 4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation 67</p>
<p>4.1. Introduction 67</p>
<p>4.2. Component modeled by a DBN&nbsp; 69</p>
<p>4.2.1. DBN model of a MC&nbsp; 70</p>
<p>4.2.2. DBN model of non–homogeneous MC&nbsp; 71</p>
<p>4.2.3. Stochastic process with exogenous constraint&nbsp; 72</p>
<p>4.3. Model of a dynamic multi–state system&nbsp; 75</p>
<p>4.4. Discussion on dependent processes&nbsp; 79</p>
<p>4.5. Conclusion&nbsp; 81</p>
<p>Chapter 5. Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System&nbsp; 83</p>
<p>5.1. Introduction 83</p>
<p>5.2. Integrating reliability information into the control 84</p>
<p>5.3. Control integrating reliability modeled by DBN&nbsp; 85</p>
<p>5.3.1. Modeling and controlling an over–actuated system&nbsp; 86</p>
<p>5.3.2. Integrating reliability&nbsp; 88</p>
<p>5.4. Application to a drinking water network 90</p>
<p>5.4.1. DBN modeling 91</p>
<p>5.4.2. Results and discussion 92</p>
<p>5.5. Conclusion 95</p>
<p>5.6. Acknowledgments&nbsp; 96</p>
<p>Conclusion 97</p>
<p>Bibliography&nbsp; 101</p>
<p>Index 113</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Benefits of Bayesian Network Models