,

Signposts to Chiral Drugs

Organic Synthesis in Action

Paperback Engels 2014 9783034807708
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Highlighting 15 selected chiral structures, which represent candidate or marketed drugs, and their chemical syntheses, the authors acquaint the reader with the fascinating achievements of synthetic and medicinal chemistry.

The book starts with an introduction treating the discovery and development of a new drug entity. Each of the 15 subsequent chapters presents one of the target structures and begins with a description of its biological profile as well as any known molecular mechanisms of action, underlining the importance of its structural and stereochemical features. This section is followed by detailed discussions of synthetic approaches to the chiral target structure, highlighting creative ideas, the scaling-up of laboratory methods and their replacement by efficient modern technologies for large-scale production. Nearly 60 synthetic reactions, most of them stereoselective, catalytic or biocatalytic, as well as chiral separating methodologies are included in the book.

Vitomir Sunjic and Michael J. Parnham provide an invaluable source of information for scientists in academia and the pharmaceutical industry who are actively engaged in the interdisciplinary development of new drugs, as well as for advanced students in chemistry and related fields.

Specificaties

ISBN13:9783034807708
Taal:Engels
Bindwijze:paperback
Uitgever:Springer Basel

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>1. Organic synthesis in drug discovery and development</p><p>1.      Introduction</p><p>2.      Synthetic organic chemistry in drug R&amp;D process</p><p>3.      New concepts in drug discovery process</p><p>         3.1.   The impact of natural products upon modern drug discovery</p><p>3.2.    Biology oriented and DNA-templated synthesis in drug discovery</p><p>         3.3.   Incorporation of genomics in drug discovery</p><p>4.      Conclusion</p><p>References</p><p>2. Aliskiren fumarate</p><p> </p><p>1.                 Introduction</p><p>2.            Renin and the mechanism of action of aliskiren</p><p>3.            Structural characteristics and synthetic approaches to aliskiren</p><p>3.1       Strategy based on visual imagery, starting from Nature’s chiral pool; a Dali-like presentation of objects </p><p>3.2 Fine-tuning of the chiral ligand for the Rh complex; hydrogenation of the selected substrate with extreme enantioselectivities</p><p>4.            Conclusion</p><p>References</p><p> </p><p>3. (R)-K-13675</p><p>3.1   Introduction</p><p>3.2   Peroxisome proliferator-activated receptor a (PPARa) agonists.</p><p>3.2.1 b-Phenylpropionic acids</p><p>3.2.2 a-Alkoxy-b-arylpropionic acids</p><p>3.2.3 a-Aryloxy-b-phenyl propionic acids.</p><p>3.2.4 Oxybenzoylglycine derivatives.</p><p>3.3 Non-hydrolytic anomalous lactone ring-opening</p><p>3.4 Mitsunobu reaction in the ether bond formation</p><p>3.5 Conclusion</p><p>References</p><p> </p><p>4. Sitagliptin phosphate monohydrate</p><p>4.1 Introduction</p><p>4.2 Endogenous glucoregulatory peptide hormones and dipeptidyl peptidase IV (DPP4) inhibitors </p><p>4.3 Synthesis with C-acyl mevalonate as the N-acylating agent</p><p>4.4   Highly enantioselective hydrogenation of unprotected b-enamino amides and the use of Josiphos-ligands</p><p>4.5 Ammonium chloride, an effective promoter of catalytic enantioselective hydrogenation</p><p>4.6 Conclusion </p><p>References</p><p> </p><p>5. Biaryl unit in valsartan and vancomycin  </p><p>5.1 Introduction</p><p>5.2   Angiotensin AT1 receptor, G-protein coupled receptors (GPCRs).</p><p>5.3 Cu-promoted catalytic decarboxylative biaryl synthesis, biomimetic type aerobic decarboxylation </p><p>5.4 Stereoselective approach to axially chiral biaryl system; the case of vancomycin</p><p>5.5 Conclusion</p><p>References</p><p> </p><p>6. 3-Amino-1,4-benzodiazepines </p><p>6.1 Introduction</p><p>6.2 3-Amino-1,4-benzodiazepine derivatives, g-secretase inhibitors</p><p>6.3 Configurational stability; racemization and enantiomerization</p><p>6.4 Crystallization induced asymmetric transformation</p><p>6.5 Asymmetric Ireland-Cleisen rearrangement</p><p>6.6 Hydroboration of the terminal C=C bond; anti-Markovnikov hydratation</p><p>6.7 Crystallization-induced asymmetric transformation in the synthesis of L-768,673</p><p>6.8 Conclusion</p><p>References</p><p> </p><p>7. Sertraline</p><p>7.1 Introduction</p><p>7.2 Synaptosomal serotonin uptake and its selective inhibitors (SSRI)</p><p>7.3 Action of sertraline and its protein target</p><p>7.4 General synthetic route</p><p>7.5 Stereoselective reduction of ketones and imines under kinetic and thermodynamic control</p><p>7.5.1 Diastereoselectivity of hydrogenation of rac-tetralone-methylimine; the old (MeNH<sub>2</sub>/TiCl<sub>4</sub>/toluene) method is improved by using MeNH<sub>2</sub>/EtOH-Pd/CaCO<sub>3</sub>, 60-65 <sup>o</sup>C in a telescoped process</p><p>7.5.2 Kinetic resolution of racemic methylamine; hydrosylilation by (R,R)-(EBTHI)TiF<sub>2</sub> /PhSiH<sub>3</sub> catalytic system</p><p>7.5.3 Catalytic epimerization of the trans- to the cis-isomer of sertraline</p><p>7.5.4 Stereoselective reduction of tetralone by chiral diphenyloxazaborolidine</p><p>7.6. Desymmetrization of oxabenzonorbornadiene, Suzuki coupling of arylboronic acids and vinyl halides</p><p>7.7 Pd-Catalyzed (Tsuji-Trost) coupling of arylboronic acids and allylic esters</p><p>7.8 Simulated moving bed (SMB) in the commercial production of sertraline</p><p>7.9 Conclusion</p><p>References</p><p> </p><p>8. 1,2-Dihydroquinolines</p>8.1 Introduction<p><p>8.2       Glucocorticoid receptor (GCR)</p><p>8.3 Asymmetric organocatalysis; introducing a thiourea catalyst for Petasis   reaction</p><p>8.3.1 General consideration of the Petasis reaction</p><p>8.3.2 Catalytic,  enantioselective Petasis reaction</p><p>8.4 Multicomponent reactions (MCRs); general concept and examples</p><p>8.4.1 General concept of MCRs</p><p>8.4.2 Efficient, isocyanide-based Ugi MCRs</p><p>8.5 Conclusion</p><p>References</p><p> </p><p>9. (-)-Menthol</p><p>9.1 Introduction</p><p>9.2. Natural sources and first technological production of (-)-menthol</p>9.3   Enantioselective allylic amine-enamine-imine rearrangement, catalysed by Rh(I)-(-)-BINAP complex.<p><p>9.4 Production scale synthesis of both enantiomers</p><p>9.5 Conclusion</p><p>References</p><p> </p><p>10. Fexofenadine hydrochloride</p><p>10.1 Introduction</p><p>10.2 Histamine receptors as biological targets for antiallergy drugs</p><p>10.3 Absolute configuration and “racemic switch”</p><p>10.4 Retrosynthetic analysis of fexofenadine</p><p>10.4.1 ZnBr<sub>2</sub>-Catalyzed rearrangement of a-haloketones to terminal carboxylic acids </p><p>10.4.2 Microbial oxidation of non-activated C-H bond.</p><p>10.4.3 Bioisosterism; silicon switch of fexofenadine to sila-fexofenadine</p>10.5 Conclusion<p><p>References</p><p> </p><p>11. Montelukast sodium</p><p>11.1 Introduction</p><p>11.2 Leukotriene D4 receptor (LTD<sub>4</sub>), CysLT-1 receptor, antagonists</p><p>11.3 Hydroboration of ketones with boranes from ?-pinenes and the non-linear effect (NLE) in asymmetric reactions</p><p>11.4 Ru(II) catalyzed enantioselective hydrogen transfer</p><p>11.5 Biocatalytic reduction with ketoreductase KRED (KetoREDuctase)</p><p>11.6 CeCl<sub>3</sub>-THF solvate as a promoter of the Grignard reaction; phase transfer catalysis</p><p>11.7 Conclusion</p><p>References</p><p> </p><p>12. Thiolactone peptides as antibacterial peptidomimetics</p><p>12.1. Introduction</p>12.2 Virulence and quorum sensing system of Staphylococcus aureus.<p><p>12.3 Development of chemical ligation (CL) in peptide synthesis</p><p>12.4  Development of native chemical ligation (NCL); chemoselectivity in peptide synthesis</p><p>12.5  Development of NCL  in thiolactone peptide synthesis</p><p>12.6 Conclusion</p><p>References</p><p> </p><p>13. Efavirenz</p><p>13.1 Introduction</p><p>13.2 HIV-1 reverse transcriptase (RT) inhibitors</p><p>13.2.1 Steric interactions at the active site</p><p>13.3 Asymmetric addition of alkyne anion to C=O bond with formation of chiral Li<sup>+</sup> aggregates</p><p>13.3.1 Mechanism of the chirality transfer</p><p>13.3.2 Equilibration of lithium aggregates and the effect of their relative stability on enantioselectivity</p><p>13.4 Scale-up of alkynylation promoted by the use of Et<sub>2</sub>Zn.  </p><p>13.5 Conclusion</p><p>References</p><p> </p><p>14. Paclitaxel</p><p>14.1 Introduction </p><p>14.2 Disturbed dynamics of cellular microtubules by binding to ß-tubulin</p><p>14.2  Three selected synthetic transformations on the pathway to paclitaxel</p><p>14.3 Three selected synthetic transformations on the pathway to paclitaxel</p><p>14.3.1 Intramolecular Heck reaction on the synthetic route to baccatin III</p><p>14.3.2 Trifunctional catalyst for biomimetic synthesis of chiral diols; synthesis of the paclitaxel side-chain</p><p>14.3.3 Zr-complex catalysis in the reductive N-deacylation of taxanes to the primary amine, the key precursor of paclitaxel</p><p>14.4 Conclusion</p><p>References</p><p> </p><p>15. Neoglycoconjugate </p><p>15.1 Introduction</p><p>15.2 Human a-1,3-fucosyltransferase (Fuc-T)</p><p>15.3 Click chemistry, energetically preferred reactions</p><p>15.4 Target-guided synthesis (TGS) or freeze-frame click chemistry</p><p>15.5 Application of click chemistry to the synthesis of nucleoconjugate 1</p><p>15.6 Conclusion</p><p>References</p><p> </p><p>16. 12-Aza epothilones</p><p>16.1 Introduction</p><p>16.2 Epothilones; mechanism of action and structure-activity relationships</p><p>16.3. Extensive versus peripheral structural modifications of natural products</p><p>16.4  Ring closure metathesis (RCM), an efficient  approach to mac rocyclic “non-natural natural-products”</p><p>16.5Diimide reduction of the allylic C=C bond</p><p>16.6Conclusion</p><p>References</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Signposts to Chiral Drugs