Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20

Neural Networks and Deep Learning

A Textbook

Gebonden Engels 2018 9783319944623
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:

The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.

Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.

Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.
The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Specificaties

ISBN13:9783319944623
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer
Verschijningsdatum:13-9-2018
Hoofdrubriek:IT-management / ICT

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Over Charu Aggarwal

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has worked extensively in the field of data mining. He has published more than 250 papers in refereed conferences and journals and authored over 80 patents. He is author or editor of 14 books, including the first comprehensive book on outlier analysis, which is written from a computer science point of view. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He is a recipient of an IBM Corporate Award (2003) for his work on bio-terrorist threat detection in data streams, a recipient of the IBM Outstanding Innovation Award (2008) for his scientific contributions to privacy technology, a recipient of the IBM Outstanding Technical Achievement Award (2009) for his work on data streams, and a recipient of an IBM Research Division Award (2008) for his contributions to System S. He also received the EDBT 2014 Test of Time Award for his work on condensation-based privacy-preserving data mining. He has served as the general co-chair of the IEEE Big Data Conference, 2014. He served as an associate editor of the IEEE Transactions on Knowledge and Data Engineering from 2004 to 2008. He is an associate editor of the ACM Transactions on Knowledge Discovery from Data, an action editor of the Data Mining and Knowledge Discovery Journal, editor-in- chief of the ACM SIGKDD Explorations, and an associate editor of the Knowledge and Information Systems Journal. He serves on the advisory board of the Lecture Notes on Social Networks, a publication by Springer. He has served as the vice-president of the SIAM Activity Group on Data Mining, which is responsible for all data mining activities organized by SIAM, including their main data mining conference. He is a fellow of the SIAM, the ACM, and the IEEE for “contributions to knowledge discovery and data mining algorithms.”

Andere boeken door Charu Aggarwal

Inhoudsopgave

1 An Introduction to Neural Networks.- 2 Machine Learning with Shallow Neural Networks.- 3 Training Deep Neural Networks.- 4 Teaching Deep Learners to Generalize.- 5 Radical Basis Function Networks.- 6 Restricted Boltzmann Machines.- 7 Recurrent Neural Networks.- 8 Convolutional Neural Networks.- 9 Deep Reinforcement Learning.- 10 Advanced Topics in Deep Learning.

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Neural Networks and Deep Learning