,

Formulation of Disperse Systems – Science and Technology

Science and Technology

Gebonden Engels 2014 9783527336821
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

This book presents comprehensively the science and technology behind the formulation of disperse systems like emulsions, suspensions, foams and others. Starting with a general introduction, the book covers a broad range of topics like the role of different classes of surfactants, stability of disperse systems, formulation of different dispersions, evaluation of formulations and many more. Many examples are included, too. Written by the experienced author and editor Tharwart Tadros, this book is indispensable for every scientist working in the field.

Specificaties

ISBN13:9783527336821
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:504

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface XVII</p>
<p>1 General Introduction 1</p>
<p>1.1 Suspensions 1</p>
<p>1.2 Latexes 2</p>
<p>1.3 Emulsions 2</p>
<p>1.4 Suspoemulsions 3</p>
<p>1.5 Multiple Emulsions 3</p>
<p>1.6 Nanosuspensions 4</p>
<p>1.7 Nanoemulsions 4</p>
<p>1.8 Microemulsions 5</p>
<p>1.9 Pigment and Ink Dispersions 5</p>
<p>1.10 Foams 5</p>
<p>References 9</p>
<p>2 Surfactants Used in Formulation of Dispersions 11</p>
<p>2.1 General Classification of Surface–Active Agents 12</p>
<p>2.1.1 Anionic Surfactants 13</p>
<p>2.1.1.1 Carboxylates 13</p>
<p>2.1.1.2 Sulphates 14</p>
<p>2.1.1.3 Sulphonates 15</p>
<p>2.1.1.4 Phosphate–Containing Anionic Surfactants 16</p>
<p>2.1.2 Cationic Surfactants 16</p>
<p>2.1.3 Amphoteric (Zwitterionic) Surfactants 17</p>
<p>2.1.4 Nonionic Surfactants 18</p>
<p>2.1.4.1 Alcohol Ethoxylates 19</p>
<p>2.1.4.2 Alkyl Phenol Ethoxylates 19</p>
<p>2.1.4.3 Fatty Acid Ethoxylates 20</p>
<p>2.1.4.4 Sorbitan Esters and Their Ethoxylated Derivatives (Spans and Tweens) 20</p>
<p>2.1.4.5 Ethoxylated Fats and Oils 21</p>
<p>2.1.4.6 Amine Ethoxylates 21</p>
<p>2.1.4.7 Amine Oxides 21</p>
<p>2.1.5 Specialty Surfactants 22</p>
<p>2.1.5.1 Fluorocarbon and Silicone Surfactants 22</p>
<p>2.1.5.2 Gemini Surfactants 23</p>
<p>2.1.5.3 Surfactants Derived from Monosaccharides and Polysaccharides 23</p>
<p>References 24</p>
<p>3 Physical Chemistry of Surfactant Solutions and the Process of Micellisation 27</p>
<p>3.1 Thermodynamics of Micellisation 33</p>
<p>3.1.1 Kinetic Aspects 34</p>
<p>3.1.2 Equilibrium Aspects: Thermodynamics of Micellisation 35</p>
<p>3.2 Enthalpy and Entropy of Micellisation 37</p>
<p>3.2.1 Driving Force for Micelle Formation 38</p>
<p>3.2.2 Micellisation in Surfactant Mixtures (Mixed Micelles) 40</p>
<p>References 43</p>
<p>4 Dispersants and Polymeric Surfactants 45</p>
<p>4.1 Solution Properties of Polymeric Surfactants 46</p>
<p>4.2 General Classification of Polymeric Surfactants 50</p>
<p>4.3 Polyelectrolytes 53</p>
<p>References 54</p>
<p>5 Adsorption of Surfactants at the Air/Liquid, Liquid/Liquid, and Solid/Liquid Interfaces 55</p>
<p>5.1 Introduction 55</p>
<p>5.2 Adsorption of Surfactants at the Air/Liquid (A/L) and Liquid/Liquid (L/L) Interfaces 56</p>
<p>5.3 The Gibbs Adsorption Isotherm 57</p>
<p>5.4 Equation of State Approach 60</p>
<p>5.5 The Langmuir, Szyszkowski, and Frumkin Equations 62</p>
<p>5.6 Interfacial Tension Measurements 63</p>
<p>5.6.1 The Wilhelmy Plate Method 63</p>
<p>5.6.2 The Pendant Drop Method 64</p>
<p>5.6.3 The Du Nouy s Ring Method 64</p>
<p>5.6.4 The Drop Volume (Weight) Method 65</p>
<p>5.6.5 The Spinning Drop Method 65</p>
<p>5.7 Adsorption of Surfactants at the Solid/Liquid (S/L) Interface 66</p>
<p>5.7.1 Adsorption of Ionic Surfactants on Hydrophobic Surfaces 68</p>
<p>5.7.2 Adsorption of Ionic Surfactants on Polar Surfaces 71</p>
<p>5.7.3 Adsorption of Nonionic Surfactants 72</p>
<p>References 74</p>
<p>6 Adsorption of Polymeric Surfactants at the Solid/Liquid Interface 77</p>
<p>6.1 Theories of Polymer Adsorption 80</p>
<p>6.2 Experimental Techniques for Studying Polymeric Surfactant Adsorption 88</p>
<p>6.2.1 Measurement of the Adsorption Isotherm 88</p>
<p>6.2.2 Measurement of the Fraction of Segments, p 89</p>
<p>6.3 Determination of Segment Density Distribution (z) and Adsorbed Layer Thickness h 89</p>
<p>6.4 Examples of the Adsorption Isotherms of Nonionic Polymeric Surfactants 92</p>
<p>6.4.1 Adsorbed Layer Thickness Results 96</p>
<p>6.4.2 Kinetics of Polymer Adsorption 98</p>
<p>References 98</p>
<p>7 Colloid Stability of Disperse Systems Containing Electrical Double Layers 101</p>
<p>7.1 Origin of Charge on Surfaces 101</p>
<p>7.1.1 Surface Ions 101</p>
<p>7.1.2 Isomorphic Substitution 102</p>
<p>7.2 Structure of the Electrical Double Layer 103</p>
<p>7.2.1 Diffuse Double layer (Gouy and Chapman) 103</p>
<p>7.3 Stern Grahame Model of the Double Layer 104</p>
<p>7.4 Distinction between Specific and Nonspecific Adsorbed Ions 104</p>
<p>7.5 Electrical Double Layer Repulsion 105</p>
<p>7.6 van der Waals Attraction 106</p>
<p>7.7 Total Energy of Interaction 109</p>
<p>7.7.1 Deryaguin Landau Verwey Overbeek (DLVO) Theory 109</p>
<p>7.8 Flocculation of Suspensions 111</p>
<p>7.9 Criteria for Stabilisation of Dispersions with Double Layer Interaction 113</p>
<p>References 114</p>
<p>8 Stability of Disperse Systems Containing Adsorbed Nonionic Surfactants or Polymers: Steric Stabilisation 115</p>
<p>8.1 Introduction 115</p>
<p>8.2 Interaction between Particles Containing Adsorbed Nonionic and Polymeric Surfactant Layers (Steric Stabilisation) 116</p>
<p>8.3 Mixing Interaction Gmix 117</p>
<p>8.4 Elastic Interaction Gel 118</p>
<p>8.5 Total Energy of Interaction 119</p>
<p>8.6 Criteria for Effective Steric Stabilisation 120</p>
<p>8.7 Flocculation of Sterically Stabilised Dispersions 121</p>
<p>8.7.1 Weak Flocculation 121</p>
<p>8.7.2 Incipient Flocculation 121</p>
<p>8.7.3 Depletion Flocculation 122</p>
<p>References 123</p>
<p>9 Formulation of Solid/Liquid Dispersions (Suspensions) 125</p>
<p>9.1 Introduction 125</p>
<p>9.2 Preparation of Suspensions 126</p>
<p>9.3 Condensation Methods: Nucleation and Growth 126</p>
<p>9.4 Dispersion Methods 128</p>
<p>9.4.1 Wetting of Powders by Liquids 129</p>
<p>9.4.2 Structure of the Solid/Liquid Interface and the Electrical Double Layer 131</p>
<p>9.4.2.1 Electrical Double Layer Repulsion 132</p>
<p>9.4.2.2 van der Waals Attraction 132</p>
<p>9.4.2.3 Total Energy of Interaction 133</p>
<p>9.4.2.4 Criteria for Stabilisation of Suspensions with Double Layer Interaction 135</p>
<p>9.4.2.5 Electrokinetic Phenomena and the Zeta–Potential 135</p>
<p>9.4.2.6 Calculation of the Zeta–Potential 136</p>
<p>9.4.2.7 Measurement of the Zeta–Potential 137</p>
<p>9.4.3 Dispersing Agents for Formulation of Suspensions 139</p>
<p>9.4.4 Adsorption of Surfactants at the Solid/Liquid Interface 139</p>
<p>9.4.5 Steric Stabilisation of Suspensions 141</p>
<p>9.4.6 Flocculation of Sterically Stabilised Suspensions 143</p>
<p>9.4.7 Properties of Concentrated Suspensions 144</p>
<p>9.4.8 Characterisation of Suspensions and Assessment of their Stability 149</p>
<p>9.4.8.1 Optical Microscopy 150</p>
<p>9.4.8.2 Electron Microscopy 151</p>
<p>9.4.8.3 Confocal Laser Scanning Microscopy 151</p>
<p>9.4.8.4 Scattering Techniques 151</p>
<p>9.5 Bulk Properties of Suspensions 152</p>
<p>9.5.1 Rheological Measurements 152</p>
<p>9.5.2 Sedimentation of Suspensions and Prevention of Formation of Dilatant Sediments (Clays) 153</p>
<p>9.5.3 Prevention of Sedimentation and Formation of Dilatant Sediments 156</p>
<p>References 159</p>
<p>10 Formulation of Liquid/Liquid Dispersions (Emulsions) 161</p>
<p>10.1 Introduction 161</p>
<p>10.1.1 Creaming and Sedimentation 161</p>
<p>10.1.2 Flocculation 162</p>
<p>10.1.3 Ostwald Ripening (Disproportionation) 162</p>
<p>10.1.4 Coalescence 163</p>
<p>10.1.5 Phase Inversion 163</p>
<p>10.2 Industrial Applications of Emulsions 163</p>
<p>10.3 Physical Chemistry of Emulsion Systems 164</p>
<p>10.3.1 The Interface (Gibbs Dividing Line) 164</p>
<p>10.3.2 Thermodynamics of Emulsion Formation and Breakdown 165</p>
<p>10.3.3 Interaction Energies (Forces) between Emulsion Droplets and Their Combinations 166</p>
<p>10.3.3.1 van der Waals Attractions 166</p>
<p>10.3.3.2 Electrostatic Repulsion 167</p>
<p>10.3.3.3 Steric Repulsion 170</p>
<p>10.4 Adsorption of Surfactants at the Liquid/Liquid Interface 172</p>
<p>10.4.1 Mechanism of Emulsification 174</p>
<p>10.4.2 Methods of Emulsification 175</p>
<p>10.4.3 Role of Surfactants in Emulsion Formation 177</p>
<p>10.4.4 Role of Surfactants in Droplet Deformation 179</p>
<p>10.5 Selection of Emulsifiers 183</p>
<p>10.5.1 The Hydrophilic Lipophilic Balance (HLB) Concept 183</p>
<p>10.5.2 The Phase Inversion Temperature (PIT) Concept 186</p>
<p>10.6 Creaming or Sedimentation of Emulsions 187</p>
<p>10.6.1 Creaming or Sedimentation Rates 188</p>
<p>10.6.1.1 Very Dilute Emulsions ( &lt; 0.01) 188</p>
<p>10.6.1.2 Moderately Concentrated Emulsions (0.2 &lt; &lt; 0.1) 189</p>
<p>10.6.1.3 Concentrated Emulsions ( &gt; 0.2) 189</p>
<p>10.6.2 Prevention of Creaming or Sedimentation 190</p>
<p>10.6.2.1 Matching the Density of Oil and Aqueous Phases 190</p>
<p>10.6.2.2 Reduction of Droplet Size 190</p>
<p>10.6.2.3 Use of Thickeners 190</p>
<p>10.6.2.4 Controlled Flocculation 191</p>
<p>10.6.2.5 Depletion Flocculation 191</p>
<p>10.7 Flocculation of Emulsions 192</p>
<p>10.7.1 Mechanism of Emulsion Flocculation 193</p>
<p>10.7.1.1 Flocculation of Electrostatically Stabilised Emulsions 193</p>
<p>10.7.1.2 Flocculation of Sterically Stabilised Emulsions 195</p>
<p>10.8 General Rules for Reducing (Eliminating) Flocculation 196</p>
<p>10.8.1 Charge–Stabilised Emulsions (e.g., Using Ionic Surfactants) 196</p>
<p>10.8.2 Sterically Stabilised Emulsions 196</p>
<p>10.9 Ostwald Ripening 196</p>
<p>10.10 Emulsion Coalescence 198</p>
<p>10.10.1 Rate of Coalescence 200</p>
<p>10.11 Phase Inversion 200</p>
<p>References 201</p>
<p>11 Formulation of Suspoemulsions (Mixtures of Suspensions and Emulsions) 203</p>
<p>11.1 Introduction 203</p>
<p>11.2 Suspoemulsions in Paints 204</p>
<p>11.2.1 Suspoemulsions in Sunscreens and Colour Cosmetics 207</p>
<p>11.3 Suspoemulsions in Agrochemicals 219</p>
<p>11.3.1 Model Suspoemulsion of Polystyrene Latex and Isoparaffinic Oil stabilised with Synperonic PE (PEO PPO PEO A–B–A Block Copolymer) 225</p>
<p>11.3.2 Model Systems of Polystyrene Latex with Grafted PEO Chains and Hexadecane Emulsions 227</p>
<p>References 230</p>
<p>12 Formulation of Multiple Emulsions 231</p>
<p>12.1 Introduction 231</p>
<p>12.2 Preparation of Multiple Emulsions 232</p>
<p>12.3 Types of Multiple Emulsions 233</p>
<p>12.4 Breakdown Processes of Multiple Emulsions 233</p>
<p>12.5 Factors Affecting Stability of Multiple Emulsions, and Criteria for Their Stabilisation 235</p>
<p>12.6 General Description of Polymeric Surfactants 237</p>
<p>12.7 Interaction between Oil or Water Droplets Containing an Adsorbed Polymeric Surfactant: Steric Stabilisation 238</p>
<p>12.8 Examples of Multiple Emulsions Using Polymeric Surfactants 246</p>
<p>12.9 Characterisation of Multiple Emulsions 247</p>
<p>12.9.1 Droplet Size Measurements 247</p>
<p>12.10 Rheological Measurements 248</p>
<p>References 249</p>
<p>13 Preparation of Nanosuspensions 251</p>
<p>13.1 Introduction 251</p>
<p>13.2 Nucleation and Growth, and Control of Particle Size Distribution 252</p>
<p>13.3 Preparation of Nanosuspensions by Bottom–Up Processes 254</p>
<p>13.3.1 Solvent Antisolvent Method 255</p>
<p>13.3.2 Use of a Nanoemulsion 255</p>
<p>13.3.3 Mixing Two Microemulsions 256</p>
<p>13.3.4 Preparation of Polymer Nanoparticles by Miniemulsion or Minisuspension polymerisation 256</p>
<p>13.4 Preparation of Nanosuspensions Using the Bottom–Down Process 257</p>
<p>13.4.1 Wetting of the Bulk Powder 257</p>
<p>13.4.2 Breaking of Aggregates and Agglomerates into Individual Units 260</p>
<p>13.4.3 Wet Milling or Comminution 260</p>
<p>13.4.4 Stabilisation of the Resulting Dispersion 261</p>
<p>13.4.5 Prevention of Ostwald Ripening (Crystal Growth) 268</p>
<p>References 268</p>
<p>14 Formulation of Nanoemulsions 271</p>
<p>14.1 Introduction 271</p>
<p>14.2 Mechanism of Emulsification 273</p>
<p>14.3 Methods of Emulsification and the Role of Surfactants 275</p>
<p>14.4 Preparation of Nanoemulsions 276</p>
<p>14.4.1 High–Pressure Homogenisation 276</p>
<p>14.4.2 Phase Inversion Composition (PIC) Principle 277</p>
<p>14.4.3 Phase Inversion Temperature (PIT) Principle 277</p>
<p>14.4.4 Preparation of Nanoemulsions by Dilution of Microemulsions 279</p>
<p>14.5 Steric Stabilisation and the Role of the Adsorbed Layer Thickness 281</p>
<p>14.5.1 Ostwald Ripening 283</p>
<p>14.5.2 Practical Examples of Nanoemulsions 284</p>
<p>14.5.3 Nanoemulsions Based on Polymeric Surfactants 293</p>
<p>References 299</p>
<p>15 Formulation of Microemulsions 301</p>
<p>15.1 Introduction 301</p>
<p>15.2 Thermodynamic Definition of Microemulsions 302</p>
<p>15.3 Mixed–Film and Solubilisation Theories of Microemulsions 303</p>
<p>15.3.1 Mixed–Film Theories 303</p>
<p>15.3.2 Solubilisation Theories 305</p>
<p>15.4 Thermodynamic Theory of Microemulsion Formation 307</p>
<p>15.4.1 Reason for Combining Two Surfactants 308</p>
<p>15.4.2 Factors Determining W/O versus O/W Microemulsions 309</p>
<p>15.5 Characterisation of Microemulsions Using Scattering Techniques 311</p>
<p>15.5.1 Time–Average (Static) Light Scattering 311</p>
<p>15.5.2 Calculation of Droplet Size from Interfacial Area 313</p>
<p>15.5.3 Dynamic Light Scattering (Photon Correlation Spectroscopy; PCS) 314</p>
<p>15.6 Characterisation of Microemulsions Using Conductivity 315</p>
<p>15.7 NMR Measurements 316</p>
<p>15.8 Formulation of Microemulsions 317</p>
<p>15.8.1 The HLB System 318</p>
<p>15.8.2 Phase Inversion Temperature (PIT) Method 319</p>
<p>15.8.3 The Cohesive Energy Ratio (CER) Concept 320</p>
<p>15.8.4 Cosurfactant Partitioning 322</p>
<p>References 322</p>
<p>Further Reading 323</p>
<p>16 Formulation of Foams 325</p>
<p>16.1 Introduction 325</p>
<p>16.2 Foam Preparation 326</p>
<p>16.3 Foam Structure 327</p>
<p>16.4 Classification of Foam Stability 328</p>
<p>16.5 Drainage and Thinning of Foam Films 329</p>
<p>16.6 Theories of Foam Stability 330</p>
<p>16.6.1 Surface Viscosity and Elasticity Theory 330</p>
<p>16.6.2 The Gibbs Marangoni Effect Theory 330</p>
<p>16.6.3 Surface Forces Theory (Disjoining Pressure ) 331</p>
<p>16.6.4 Stabilisation by Micelles (High Surfactant Concentrations &gt; cmc) 334</p>
<p>16.6.5 Stabilisation by Lamellar Liquid Crystalline Phases 334</p>
<p>16.6.6 Stabilisation of Foam Films by Mixed Surfactants 334</p>
<p>16.7 Foam Inhibitors 335</p>
<p>16.7.1 Chemical Inhibitors That Lower Viscosity and Increase Drainage 335</p>
<p>16.7.2 Solubilised Chemicals Which Cause Antifoaming 335</p>
<p>16.7.3 Droplets and Oil Lenses Which Cause Antifoaming and Defoaming 336</p>
<p>16.7.4 Surface Tension Gradients (Induced by Antifoamers) 336</p>
<p>16.7.5 Hydrophobic Particles as Antifoamers 337</p>
<p>16.7.6 Mixtures of Hydrophobic Particles and Oils as Antifoamers 338</p>
<p>16.8 Physical Properties of Foams 338</p>
<p>16.8.1 Mechanical Properties 338</p>
<p>16.8.2 Rheological Properties 339</p>
<p>16.8.3 Electrical Properties 340</p>
<p>16.8.4 Electrokinetic Properties 340</p>
<p>16.8.5 Optical Properties 341</p>
<p>16.9 Experimental Techniques for Studying Foams 341</p>
<p>16.9.1 Studies on Foam Films 341</p>
<p>16.9.2 Structural Parameters of Foams 342</p>
<p>16.9.3 Foam Drainage 342</p>
<p>16.9.4 Foam Collapse 343</p>
<p>References 343</p>
<p>17 Formulation of Latexes 345</p>
<p>17.1 Introduction 345</p>
<p>17.2 Emulsion Polymerisation 346</p>
<p>17.2.1 Mechanism of Emulsion Polymerisation 348</p>
<p>17.2.2 Block Copolymers as Stabilisers in Emulsion Polymerisation 349</p>
<p>17.2.3 Graft Copolymers as Stabilisers in Emulsion Polymerisation 352</p>
<p>17.3 Polymeric Surfactants for Stabilisation of Preformed Latex Dispersions 356</p>
<p>17.4 Dispersion Polymerisation 360</p>
<p>17.4.1 Mechanism of Dispersion Polymerisation 362</p>
<p>17.4.2 Influence of Polymeric Surfactant Concentration and Molecular Weight on Particle Formation 363</p>
<p>17.4.3 Effect of Monomer Solubility and Concentration in the Continuous Phase 363</p>
<p>17.4.4 Stability/Instability of the Resulting Latex 364</p>
<p>17.4.5 Particle Formation in Polar Media 364</p>
<p>References 365</p>
<p>18 Formulation of Pigment and Ink Dispersions 367</p>
<p>18.1 Introduction 367</p>
<p>18.2 Powder Wetting 370</p>
<p>18.2.1 Effect of Surfactant Adsorption 374</p>
<p>18.2.2 Wetting of Powders by Liquids 375</p>
<p>18.2.3 Measurement of Wettability of Powders 377</p>
<p>18.2.3.1 Submersion Test: Sinking Time or Immersion Time 377</p>
<p>18.2.4 Measurement of Contact Angles of Liquids and Surfactant Solutions on Powders 378</p>
<p>18.2.5 Wetting Agents for Hydrophobic Pigments 379</p>
<p>18.2.6 Dynamics of Processing of Adsorption and Wetting 380</p>
<p>18.2.7 Experimental Techniques for Studying Adsorption Kinetics 384</p>
<p>18.3 Breaking of Aggregates and Agglomerates (Deagglomeration) 387</p>
<p>18.4 Classification of Dispersants 388</p>
<p>18.4.1 Surfactants 388</p>
<p>18.4.2 Polymeric Surfactants 389</p>
<p>18.4.3 Polyelectrolytes 390</p>
<p>18.4.4 Assessment and Selection of Dispersants 391</p>
<p>18.4.4.1 Adsorption Isotherms 391</p>
<p>18.4.4.2 Measurement of Dispersion and Particle Size Distribution 392</p>
<p>18.4.4.3 Wet Milling (Comminution) 392</p>
<p>18.4.4.4 Bead Mills 394</p>
<p>References 395</p>
<p>19 Methods of Evaluating Formulations after Dilution 397</p>
<p>19.1 Introduction 397</p>
<p>19.2 Assessment of the Structure of the Solid/Liquid Interface 398</p>
<p>19.2.1 Double Layer Investigation 398</p>
<p>19.2.1.1 Analytical Determination of Surface Charge 398</p>
<p>19.2.1.2 Electrokinetic and Zeta–Potential Measurements 399</p>
<p>19.2.2 Measurement of Surfactant and Polymer Adsorption 400</p>
<p>19.3 Assessment of Sedimentation of Suspensions 403</p>
<p>19.4 Assessment of Flocculation and Ostwald Ripening (Crystal Growth) 405</p>
<p>19.4.1 Optical Microscopy 406</p>
<p>19.4.1.1 Phase–Contrast Microscopy 406</p>
<p>19.4.1.2 Differential Interference Contrast (DIC) microscopy 407</p>
<p>19.4.1.3 Polarised Light Microscopy 407</p>
<p>19.4.1.4 Sample Preparation for Optical Microscopy 407</p>
<p>19.4.1.5 Particle Size Measurements Using Optical Microscopy 407</p>
<p>19.4.2 Electron Microscopy 408</p>
<p>19.4.2.1 Transmission Electron Microscopy 408</p>
<p>19.4.2.2 Scanning Electron Microscopy 409</p>
<p>19.4.3 Confocal Laser Scanning Microscopy 409</p>
<p>19.4.4 Scanning Probe Microscopy 409</p>
<p>19.4.5 Scanning Tunneling Microscopy 410</p>
<p>19.4.6 Atomic Force Microscopy 410</p>
<p>19.5 Scattering Techniques 411</p>
<p>19.5.1 Light–Scattering 411</p>
<p>19.5.1.1 Time–Average Light Scattering 411</p>
<p>19.5.1.2 Rayleigh Gans Debye Regime (RGD) /20 &lt; R &lt; 412</p>
<p>19.5.2 Turbidity Measurements 412</p>
<p>19.5.3 Light–Diffraction Techniques 413</p>
<p>19.5.4 Dynamic Light Scattering (DLS): Photon Correlation Spectroscopy (PCS) 415</p>
<p>19.5.5 Back–Scattering Techniques 418</p>
<p>19.6 Measurement of Rate of Flocculation 418</p>
<p>19.7 Measurement of Incipient Flocculation 419</p>
<p>19.8 Measurement of Crystal Growth (Ostwald Ripening) 420</p>
<p>19.9 Bulk Properties of Suspensions: Equilibrium Sediment Volume (or Height) and Redispersion 420</p>
<p>References 421</p>
<p>20 Evaluating Formulations without Dilution: Rheological Techniques 423</p>
<p>20.1 Introduction 423</p>
<p>20.2 Steady–State Measurements 424</p>
<p>20.2.1 Rheological Models for Analysis of Flow Curves 424</p>
<p>20.2.1.1 Newtonian Systems 424</p>
<p>20.2.1.2 Bingham Plastic Systems 425</p>
<p>20.2.1.3 Pseudoplastic (Shear Thinning) System 425</p>
<p>20.2.1.4 Dilatant (Shear Thickening) System 425</p>
<p>20.2.1.5 Herschel Bulkley General Model 426</p>
<p>20.2.1.6 The Casson Model 426</p>
<p>20.2.1.7 The Cross Equation 426</p>
<p>20.2.2 Time Effects during Flow: Thixotropy and Negative (or Anti–) Thixotropy 426</p>
<p>20.3 Constant Stress (Creep) Measurements 429</p>
<p>20.3.1 Analysis of Creep Curves 430</p>
<p>20.3.1.1 Viscous Fluid 430</p>
<p>20.3.1.2 Elastic Solid 430</p>
<p>20.3.2 Viscoelastic Response 430</p>
<p>20.3.2.1 Viscoelastic Liquid 430</p>
<p>20.3.2.2 Viscoelastic Solid 431</p>
<p>20.3.3 Creep Procedure 431</p>
<p>20.4 Dynamic (Oscillatory) Measurements 432</p>
<p>20.4.1 Analysis of Oscillatory Response for a Viscoelastic System 433</p>
<p>20.4.2 Vector Analysis of the Complex Modulus 434</p>
<p>20.4.2.1 Dynamic viscosity 434</p>
<p>20.4.2.2 Strain Sweep 434</p>
<p>20.4.2.3 Frequency Sweep 434</p>
<p>20.4.3 The Cohesive Energy Density Ec 436</p>
<p>20.4.4 Application of Rheological Techniques to Assess and Predict the Physical Stability of Suspensions 436</p>
<p>20.4.4.1 Rheological Techniques to Assess Sedimentation and Syneresis 436</p>
<p>20.4.4.2 Role of Thickeners 437</p>
<p>20.4.5 Assessment of Flocculation Using Rheological Techniques 438</p>
<p>20.4.5.1 Strain Sweep Measurements 440</p>
<p>20.4.5.2 Oscillatory Sweep Measurements 441</p>
<p>References 442</p>
<p>Further Reading 442</p>
<p>21 Assessment and Prediction of Creaming, Sedimentation, Flocculation, and Coalescence of Formulations 443</p>
<p>21.1 Assessment and Prediction of Creaming and Sedimentation 443</p>
<p>21.1.1 Introduction 443</p>
<p>21.1.2 Accelerated Tests and Their Limitations 443</p>
<p>21.1.3 Application of High–Gravity (g) Forces 444</p>
<p>21.1.4 Rheological Techniques for Prediction of Sedimentation or Creaming 445</p>
<p>21.1.5 Separation of Formulation ( Syneresis ) 445</p>
<p>21.1.6 Examples of Correlation of Sedimentation or Creaming with Residual (Zero Shear) Viscosity 446</p>
<p>21.1.6.1 Model Suspensions of Aqueous Polystyrene Latex 446</p>
<p>21.1.6.2 Sedimentation in Non–Newtonian Liquids 448</p>
<p>21.1.6.3 Role of Thickeners 448</p>
<p>21.1.6.4 Prediction of Emulsion Creaming 449</p>
<p>21.1.6.5 Creep Measurements for Prediction of Creaming 450</p>
<p>21.1.6.6 Oscillatory Measurements for Prediction of Creaming 451</p>
<p>21.2 Assessment and Prediction of Flocculation Using Rheological Techniques 452</p>
<p>21.2.1 Introduction 452</p>
<p>21.2.2 Wall Slip 452</p>
<p>21.2.3 Steady–State Shear Stress–Shear Rate Measurements 452</p>
<p>21.2.4 Influence of Ostwald Ripening and Coalescence 453</p>
<p>21.2.5 Constant Stress (Creep) Experiments 453</p>
<p>21.2.6 Dynamic (Oscillatory) Measurements 454</p>
<p>21.2.6.1 Strain Sweep Measurements 454</p>
<p>21.2.6.2 Oscillatory Sweep Measurements 455</p>
<p>21.2.7 Examples of the Application of Rheology for Assessment and Prediction of Flocculation 456</p>
<p>21.2.7.1 Flocculation and Restabilisation of Clays Using Cationic Surfactants 456</p>
<p>21.2.7.2 Flocculation of Sterically Stabilised Dispersions 457</p>
<p>21.2.7.3 Flocculation of Sterically Stabilised Emulsions 458</p>
<p>21.3 Assessment and Prediction of Emulsion Coalescence Using Rheological Techniques 459</p>
<p>21.3.1 Introduction 459</p>
<p>21.3.2 Rate of Coalescence 459</p>
<p>21.3.3 Rheological Techniques 460</p>
<p>21.3.3.1 Viscosity Measurements 460</p>
<p>21.3.3.2 Measurement of Yield Value as a Function of Time 461</p>
<p>21.3.3.3 Measurement of Storage Modulus G as a Function of Time 461</p>
<p>21.3.4 Correlation between Elastic Modulus and Coalescence 462</p>
<p>21.3.5 Cohesive Energy Ec 463</p>
<p>References 463</p>
<p>Index 465</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Formulation of Disperse Systems – Science and Technology