Noncontact Atomic Force Microscopy
Gebonden Engels 2002 2002e druk 9783540431176Samenvatting
Since 1995, the noncontact atomic force microscope (NC-AFM) has achieved remarkable progress. Based on nanomechanical methods, the NC-AFM detects the weak attractive force between the tip of a cantilever and a sample surface. This method has the following characteristics: it has true atomic resolution; it can measure atomic force interactions, i.e. it can be used in so-called atomic force spectroscopy (AFS); it can also be used to study insulators; and it can measure mechanical responses such as elastic deformation. This is the first book that deals with all of the emerging NC-AFM issues.
Specificaties
Lezersrecensies
Inhoudsopgave
$$.- 9.7 A Short-Range-Ordered Overlayer of K on TiO2(110).- 9.8 Conclusions.- References.- 10 Atoms and Molecules on TiO2(110) and CeO2(111) Surfaces.- 10.1 Background.- 10.2 Brief Description of Experiments.- 10.3 Surface Structures of TiO2(110).- 10.4 Adsorbed Atoms and Molecules on TiO2(110).- 10.4.1 Carboxylate Ions on TiO2(110).- 10.4.2 Hydrogen Adatoms on TiO2(110).- 10.5 Fluctuation of Acetate Ions on TiO2(110).- 10.6 Surface Structures of CeO2(111).- 10.7 Conclusions.- References.- 11 NC-AFM Imaging of Adsorbed Molecules.- 11.1 Nucleic Acid Bases on a Graphite Surface.- 11.2 Double-Stranded DNA on a Mica Surface.- 11.3 Alkanethiol on a Au(111) Surface.- References.- 12 Organic Molecular Films.- 12.1 AFM Imaging of Molecular Films.- 12.1.1 Fullerenes.- 12.1.2 Alkanethiol SAMs.- 12.1.3 Ferroelectric Molecular Films.- 12.2 Surface Potential Measurements.- 12.3 Technical Developments in NC-AFM Imaging of Molecules.- 12.4 Concluding Remarks.- References.- 13 Single-Molecule Analysis.- 13.1 Introduction.- 13.2 Molecules and Surface.- 13.3 Experimental Methods.- 13.4 Alkyl-Substituted Carboxylates.- 13.5 Numerical Simulation of Propiolate Topography.- 13.5.1 Sphere—Substrate Force.- 13.5.2 Sphere—Carboxylate Force.- 13.5.3 Cluster—Substrate Force.- 13.5.4 Cluster—Carboxylate Force.- 13.5.5 Simulated Topography.- 13.6 Fluorine-Substituted Acetates.- 13.7 Conclusions and Perspectives.- References.- 14 Low-Temperature Measurements: Principles, Instrumentation, and Application.- 14.1 Introduction.- 14.2 Microscope Operation at Low Temperatures.- 14.2.1 Drift.- 14.2.2 Noise.- 14.3 Instrumentation.- 14.4 Van der Waals Surfaces.- 14.4.1 HOPG(0001).- 14.4.2 Xenon.- 14.5 Nickel Oxide.- 14.6 Semiconductors.- 14.6.1 ??(z) Curves on Specific Atomic Sites.- 14.6.2 Tip-Dependent Atomic Scale Contrast.- 14.6.3 Tip-Induced Relaxation.- 14.7 Magnetic Force Microscopy at Low Temperatures.- 14.7.1 MFM Data Acquisition.- 14.7.2 Domain Structure of La0.7Ca0.3MnO3??.- 14.7.3 Vortices on YBa2Cu3O7??.- 14.8 Conclusions.- References.- 15 Theory of Non-Contact Atomic Force Microscopy.- 15.1 Introduction.- 15.2 Cantilever Dynamics.- 15.3 Theoretical Simulation of NC-AFM Images.- 15.4 Non-Contact Atomic Force Microscopy Images of Dynamic Surfaces.- 15.5 Effect of Tip on Image for the Si(100)2?l:H Surface.- 15.6 Effect of Tip on Surface Structure Change and its Relation to Dissipation.- 15.7 Conclusion and Outlook.- References.- 16 Chemical Interaction in NC-AFM on Semiconductor Surfaces.- 16.1 Introduction.- 16.2 First-Principles Calculation of Tip—Surface Chemical Interaction.- 16.3 Simulation of NC-AFM Images.- 16.4 Simulations on Various Surfaces.- 16.5 Tip-Induced Surface Relaxation on the GaAs(110) Surface.- 16.5.1 Vertical Scan Over an As Atom.- 16.5.2 Vertical Scan Over a Ga Atom.- 16.5.3 Relevance to Near-Contact STM Observations.- 16.5.4 Tip-Induced Surface Atomic Processes and Energy Dissipation in NC-AFM.- 16.6 Image Contrast on GaAs(110) for a Pure Si Tip: Distance Dependence.- 16.7 Effect of Tip Morphology on NC-AFM Images.- 16.7.1 Image Contrast for the Ga/Si Tip.- 16.7.2 Image Contrast for the As/Si Tip.- 16.8 Conclusion.- References.- 17 Contrast Mechanisms on Insulating Surfaces.- 17.1 Introduction.- 17.2 Model of AFM and Main Forces.- 17.2.1 Tip—Surface Setup.- 17.2.2 Forces.- 17.3 Simulating Scanning.- 17.3.1 The Surface.- 17.3.2 The Tip.- 17.3.3 Tip—Surface Interaction.- 17.3.4 Modelling Oscillations.- 17.3.5 Generating a Theoretical Surface Image.- 17.4 Applications.- 17.4.1 The Calcium Fluoride (111) Surface.- 17.4.2 Calcite: Surface Deformations During Scanning.- 17.5 Studying Surface and Defect Properties.- 17.6 Conclusions.- References.- 18 Analysis of Microscopy and Spectroscopy Experiments.- 18.1 Introduction.- 18.2 Basic Principles.- 18.2.1 Experimental Setup.- 18.2.2 Origin of the Frequency Shift.- 18.2.3 Calculation of the Frequency Shift.- 18.2.4 Frequency Shift for Conservative Tip—Sample Forces.- 18.3 Simulation of NC-AFM Images.- 18.3.1 Experimental NC-AFM Images of van der Waals Surfaces.- 18.3.2 Basic Principles of the Simulation Method.- 18.3.3 Applications of the Simulation Method.- 18.4 Dynamic Force Spectroscopy.- 18.4.1 Determining Forces from Frequencies.- 18.4.2 Analysis of Tip—Sample Interaction Forces.- 18.5 Conclusion.- References.- 19 Theory of Energy Dissipation into Surface Vibrations.- 19.1 Introduction.- 19.2 Possible Dissipation Mechanisms.- 19.2.1 Adhesion Hysteresis.- 19.2.2 Stochastic Dissipation.- 19.2.3 Other Mechanisms.- 19.3 Brownian Particle Mechanism of Energy Dissipation.- 19.3.1 Brownian Particle.- 19.3.2 Fluctuation—Dissipation Theorem.- 19.3.3 Oscillating Tip as a Brownian Particle.- 19.3.4 Energy Dissipated Per Oscillation Cycle.- 19.4 Nonequilibrium Considerations for NC-AFM Systems.- 19.4.1 Preliminary Remarks.- 19.4.2 Mixed Quantum—Classical Representation.- 19.4.3 Equation of Motion for the Tip.- 19.5 Estimation of Dissipation Energies in NC-AFM.- 19.6 Comparison with STM.- 19.7 Conclusions and Future Directions.- References.- 20 Measurement of Dissipation Induced by Tip—Sample Interactions.- 20.1 Introduction.- 20.2 Experimental Aspects of Energy Dissipation.- 20.3 Experimental Methods.- 20.4 Apparent Energy Dissipation.- 20.5 Velocity-Dependent Dissipation.- 20.5.1 Electric-Field-Mediated Joule Dissipation.- 20.5.2 Magnetic-Field-Mediated Joule Dissipation.- 20.5.3 Magnetic-Field-Mediated Dissipation.- 20.5.4 Brownian Dissipation.- 20.6 Hysteresis-Related Dissipation.- 20.6.1 Magnetic-Field-Induced Hysteresis.- 20.6.2 Hysteresis Due to Adhesion.- 20.6.3 Hysteresis Due to Atomic Instabilities.- 20.7 Dissipation Imaging with Atomic Resolution.- 20.8 Dissipation Spectroscopy.- 20.9 Conclusion.- References.
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan