From Divergent Power Series to Analytic Functions

Theory and Application of Multisummable Power Series

Paperback Engels 1994 1994e druk 9783540582687
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Multisummability is a method which, for certain formal power series with radius of convergence equal to zero, produces an analytic function having the formal series as its asymptotic expansion. This book presents the theory of multisummabi- lity, and as an application, contains a proof of the fact that all formal power series solutions of non-linear meromorphic ODE are multisummable. It will be of use to graduate students and researchers in mathematics and theoretical physics, and especially to those who encounter formal power series to (physical) equations with rapidly, but regularly, growing coefficients.

Specificaties

ISBN13:9783540582687
Taal:Engels
Bindwijze:paperback
Aantal pagina's:114
Uitgever:Springer Berlin Heidelberg
Druk:1994

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Asymptotic power series.- Laplace and borel transforms.- Summable power series.- Cauchy-Heine transform.- Acceleration operators.- Multisummable power series.- Some equivalent definitions of multisummability.- Formal solutions to non-linear ODE.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        From Divergent Power Series to Analytic Functions