Vorwort 1 Einführung 1.1 Aus der Mengenlehre 1.2 Der n-dimensionale Raum 1.3 Vektoraddition; skalares Vielfaches eines Vektors 1.4 Geraden 1.5 Die Geradengleichung in der Ebene 1.6 Das innere Produkt in der Ebene 1.7 Abstand Punkt - Gerade 1.8 Das innere Produkt im Raume 1.9 Lineare Abhängigkeit und Unabhängigkeit von Vektoren im Rn . 1.10 Das äußere Produkt im Raume 1.11 Ebenen im Raume; Abstand Punkt - Ebene 1.12 Abbildungen 2 Gruppen, Körper, lineare Räume 2.1 Gruppen 2.2 Körper 2.3 Lineare oder Vektorräume 2.4 Das Erzeugnis 2.5 Lineare Abhängigkeit und Unabhängigkeit 2.6 Basen in endlichdimensionalen Räumen 3 Lineare Abbildungen 3.1 Definition und Beispiele 3.2 Lineare Abbildungen und Matrizen 3.3 Zusammensetzung linearer Abbildungen 3.4 Das Gauß'sche Eliminationsverfahren 3.5 Invertierung linearer Abbildungen 3.6 Weiteres zum Eliminationsverfahren 3.7 Anwendung: Zur Wärmeleitungsgleichung 4 Geometrie linearer Abbildungen 4.1 Der Nullraum oder Kern 4.2 Das Bild 4.3 Basiswechsel 4.4 Der Rang einer linearen Abbildung 4.5 Direkte Summen; Quotientenräume 5 Lineare Abbildungen - Determinanten 5.1 Determinanten kleiner Matrizen 5.2 Permutationen 5.3 Determinanten - Vorbereitung 5.4 Grundeigenschaften von Determinanten 5.5 Algorithmisches 6 Eigenwerte und Eigenvektoren 6.1 Von den Polynomen 6.2 Eigenwerte und Eigenvektoren: Grundeigenschaften 6.3 Das charakteristische Polynom 6.4 Eigenräume 7 Innere Produkte und Normen 7.1 Inneres Produkt - reeller Fall 7.2 Inneres Produkt - komplexer Fall 7.3 Normierte Räume 7.4 Orthogonalisierung von Vektoren 7.5 Orthogonale Basen und andere 7.6 Adjunktion, Transposition und Hermite'sche Konjugation 7.7 Beste Approximation durch Teilräume 7.8 Ausgleichsprobleme 8 Adjungierte Transformation und selbstadjungierte Abbildungen 8.1 Die adjungierte Transformation 8.2 Normale Abbildungen 8.3 Selbstadjungierte Abbildungen 8.4 Orthogonale und unitäre Abbildungen 8.5 Bilinearformen und Sesquilinearformen 8.6 Synopsis: Gruppen linearer Abbildungen 8.7 Klassifikation der Kurven und Flächen zweiter Ordnung 8.8 Komplexe Exponentialfunktion und Fourierreihen 8.9 Die diskrete Fouriertransformation 8.10 Anwendungen der Fouriertransformation 9 Normalformen von Matrizen 9.1 Die Jordan'sche Normalform 9.2 Anwendung: Gewöhnliche Differentialgleichungen 9.3 Die Singulärwertzerlegung 10 Lineare Algebra und partielle Differentialgleichungen 10.1 Methode der Finiten Elemente 10.2 Die Wärmeleitungsgleichung: Symmetrie und Variationsprinzip 10.3 Die Ritz-Galernkin'sche Methode 10.4 Implementierung des Ritz-Galernkin'schen Verfahrens 10.5 Die von Neumann'sche Stabilitätsanalyse 11 Numerische Lineare Algebra 11.1 Householder-Matrizen und die QR-Zerlegung 11.2 Normen: Querverbindungen zur Analysis 11.3 Matrixnormen 11.4 Kondition von Gleichungssystemen 11.5 Iterative Lösung von Gleichungen: Das Prinzip 11.6 Die Verfahren von Jacobi und Gauß-Seidel 11.7 Das Mehrgitterverfahren 11.8 Das Verfahren der konjugierten Gradienten 11.9 Eigenwerte: Die Potenzmethode 11.10 Hessenbergmatrizen 11.11 Eigenwerte reeller symmetrischer Matrizen 12 Lineare Optimierung 12.1 Die Problemstellung 12.2 Konvexe Polyeder 12.3 Die Simplexmethode Index