10 Catecholamines in the Central Nervous System.- A. Central Catecholamine-Containing Neuronal Systems.- I. Introduction.- 1. Dopaminergic Systems.- a. Tuberoinfundibular Dopamine System.- b. Mesocoritcal Dopamine System.- c. Mesostriatal Dopamine System.- d. Mesolimbic Dopamine System.- e. Incerto-Hypothalamic Dopamine System.- f. Periventricular Dopamine System.- g. Descending Spinal Dopaminergic Fibers.- h. Olfactory Dopamine System.- 2. The Noradrenergic System.- a. Ventral Noradrenergic Bundle (also called the ventral tegmental tract).- b. Dorsal Noradrenergic Bundle.- c. Dorsal Perventricular Noradrenergic System.- d. Ventral Periventricular Noradrenergic System.- e. Cerebellar Noradrenergic Pathway.- f. Bulbospinal Noradrenergic Pathways.- 3. The Adrenergic System.- B. Regional Concentrations of Catecholamines in the Brain.- I. Dopamine.- II. Noradrenaline.- III. Adrenaline.- C. Biochemical Studies on the Neuronal Projections of the Catecholaminergic Cells.- I. Dopamine.- II. Noradrenaline.- III. Adrenaline.- D. Regional Turnover of Catecholamines.- E. References.- 11 Catecholamines and Behaviour.- A. Introduction.- I. Catecholamine Hypotheses of Behaviors.- II. Theoretical Constructions Linking Catecholamines and Behavior.- B. Dopamine Systems.- I. Nigrostriatal System.- 1. Anatomical Foundations.- 2. Cellular Actions.- a. Iontophoretic Actions.- b. Intracellular Recordings of Dopamine Action.- c. Actions of the Pathways.- d. Functional Inferences from Lesion Studies.- e. Functional Implications from Behavioral Correlations of Dopamine Neuron Firing Patterns.- 3. Neuropsychopharmacology.- a. Motor Behavior.- b. Sensory-Motor Integration.- II. Mesocortical and Mesolimbic Systems.- 1. Anatomical Foundations.- 2. Cellular Actions.- 3. Neuropsychopharmacology.- a. Motor Behavior.- b. Motivational Effects.- III. General Behavioral Correlations: Dopamine and Reward.- a. Anatomical Studies.- b. Pharmacological Studies.- IV. Dopamine and Learning.- V. Summary and Conclusions.- C. Noradrenergic Systems.- I. Anatomical Foundations.- II. Cellular Interactions Between Central Catecholamine Systems and Other Synaptic Systems.- III. Molecular Mechanisms of Central Noradrenergic Synapses: Role of Cyclic AMP.- IV. Cerebellar Synaptic Systems as a Model for Noradrenergic Integrative Actions.- V. Hypotheses of Noradrenergic Cellular Integration: Enabling.- VI. Behavioral Correlates of Central Catecholamine Neurons.- 1. Anatomy of Afferents to Locus Coeruleus.- 2. Firing Patterns in Anesthetized Paralyzed Preparations.- 3. Firing Patterns in Unanesthetized Behaving Animals.- 4. A Behavioral Hypothesis of Locus Coeruleus Firing Correlates.- VII. Neuropsychopharmaeology.- 1. The Locus Coeruleus and Dorsal Noradrenergic Bundle.- a. The “Stress” Connection.- b. Reward and Learning.- c. Anxiety.- 2. Ventral Noradrenergic Bundle.- a. Feeding Behavior.- b. Sexual Behavior.- 3. Summary and Conclusions.- D. Overall Conclusions.- E. References.- 12 Central Control of Anterior Pituitary Function.- A. Introduction.- B. Growth Hormone.- I. Normal Patterns of Growth Hormone (GH) Secretion.- II. Hypothalamic Regulation of GH Secretion.- III. Hypothalamic Factors Involved in GH Regulation.- IV. Monoaminergic Control of GH Secretion.- V. Conclusions.- C. Prolactin.- I. Normal Patterns of Prolactin Secretion.- II. Hypothalamic Influence on Prolactin Secretion.- III. Hypothalamic Factors Involved in Prolactin Regulation.- 1. Prolactin Release-Inhibiting Factor (PIF).- 2. Prolactin Releasing Factor (PRF).- 3. Thyrotropin Releasing Hormone (TRH).- 4. Estrogens.- 5. Opioid Peptides.- IV. Monoaminergic Control of Prolactin Secretion.- V. Conclusions.- D. Thyrotropin.- I. Normal Patterns of Thyrotropin (TSH) Secretion.- II. Hypothalamic Regulation of TSH Release.- III. Hypothalamic Factors Involved in TSH Regulation.- 1. TRH.- 2. Somatostatin.- IV. Pituitary-Thyroid Feedback.- V. Monoaminergic Control of TSH Secretion.- VI. Conclusions.- E. Gonadotropins.- I. Normal Patterns of LH and FSH Secretion.- II. Hypothalamic Regulation of LH and FSH Secretion.- III. Hypothalamic Luteinizing Hormone-Releasing Hormone.- IV. Monoaminergic Control of LH and FSH Secretion.- V. Conclusions.- F. Adrenocorticotropin.- I. Normal Patterns of Adrenocorticotropin (ACTH) Secretion.- II. Hypothalamic Regulation of ACTH Secretion.- III. Corticotropin-Releasing Factor (CRF).- IV. Monoaminergic Control of ACTH Secretion.- V. Conclusions.- G. References.- 13 Regulation of Catecholamine Development.- A. Introduction.- B. Prenatal Development.- I. The Neural Crest.- 1. Phenotypic Heterogeneity of Neural Crest Derivatives.- 2. Premigratory Neural Crest.- 3. The Migratory Environment.- 4. The Migratory Environment and Phenotypic Expression.- II. Initial Appearance of Catecholaminergic Characteristics.- 1. Cell Cycle and Initial Expression.- 2. Embryonic Environment and Catecholaminergic Expression.- a. The Notochord and Somites.- b. Nerve Growth Factor (NGF).- c. Glucocorticoid Hormones.- d. Growth Factors in Culture.- C. Postnatal Development.- I. Anterograde Trans-synaptic Regulation of Ganglionic Neurons.- II. CNS Influence on Anterograde Trans-synaptic Regulation.- III. Retrograde Trans-synaptic Regulation of Ganglia.- IV. Target Organ Regulation of Ganglionic Development.- 1. NGF and Target Organ Regulation.- D. Concluding Observations.- E. References.- 14 ?-Phenylethylamine, Phenylethanolamine, Tyramine and Octopamine.- A. Introduction.- B. Methods.- I. Enzymatic-Radioisotopic Methods.- II. Mass-Spectrographic Methods.- III. Other Methods.- IV. Choice of Method.- C. Distribution.- I. Invertebrates.- 1. Octopaminergic Cells.- II. Vertebrates.- 1. Peripheral Tissues.- 2. Body Fluids.- 3. Brain.- D. Uptake, Storage and Release.- I. Invertebrates.- II. Vertebrates.- 1. Peripheral Tissues.- 2. Brain.- E. Metabolism.- I. Formation.- 1. Decarboxylation and ?-Hydroxylation.- 2. Ring (de) Hydroxylation.- II. Degradation and Biotransformation.- 1. Oxidative Deamination.- 2. ?-Hydroxylation and Ring (de) Hydroxylation.- 3. N-Methylation.- 4. N-Acetylation.- 5. Conjugation.- III. Turnover.- F. Effects of Drugs on Tissue Levels.- I. Metabolic Precursors and Inhibitors of Degradation.- II. Psychotropic and Other Drugs.- G. Pharmacological Actions and Receptors.- I. Invertebrates.- 1. Aplysia Californica Ganglion Cells.- 2. The Firefly Lantern.- 3. Lobster Neurosecretory Neurons.- 4. Locust DUMETI Neurons.- 5. Limulus Visual System.- 6. Other Systems.- 7. Octopamine Receptors.- II. Vertebrates.- 1. Peripheral Effects.- 2. Central Effects.- H. Function in Pathological States.- I. Phenylketonuria.- II. Hepatic Encephalopathy.- III. Hypertension.- IV. Schizophrenia and Affective Disorders.- V. Miscellanea.- I. Conclusions.- K. References.- 15 Plasma Levels of Catecholamines and Dopamines-?-Hydroxylase.- A. Introduction.- B. Measurement of Plasma Catecholamines.- I. Fluorimetric Methods.- II. Radioenzymatic Methods.- 1. PNMT Method.- 2. COMT Method.- III. High Performance Liquid Chromatography with Electro-Chemical Detection (HPLC-ED).- IV. Gas Chromatography-Mass Spectroscopy (GC-MS).- V. Other Methods.- C. Plasma Catecholamine Levels.- I. Basal Levels.- II. Determinants of Basal Plasma Catecholamines Levels.- III. Physiological Significance of Plasma Catecholamine Levels.- IV. Plasma Catecholamine Variations in Normal and Stressful Situations.- 1. Time-Dependent Variations in Plasma Catecholamines.- 2. Age, Sex and Race.- 3. Postural Changes.- 4. Muscular Work and Exercise Training.- 5. Hypoglycemia.- 6. Responses to Extremes of Temperature.- 7. Hypoxia, Hypercapnea and Acidosis.- 8. Hypotension, Hypovolemia, Hemorrhage and Shock.- 9. Mental Activity, Emotional Reactions and Stress.- V. Disease States.- 1. Phaeochromocytoma.- 2. Catecholamines in Essential Hypertension.- 3. Orthostatic Hypotension.- 4. Myocardial Infarction.- 5. Congestive Heart Failure.- 6. Diabetes.- 7. Thyroid Disorders.- 8. Central Nervous System Disorders.- 9. Other Disorders.- VI. Effects of Drugs on Plasma Catecholamines.- 1. Drugs Influencing Synthesis, Storage, Release, Disposition or Action of Catecholamines.- a. Inhibition of Catecholamine Synthesis.- b. Interference with Storage or Release.- c. Chemical Sympathectomy.- d. Blockade of Uptake or Metabolism.- e. ?-Adrenoceptor-Mediated Effect.- f. ?-Adrenoceptor-Mediated Effects.- 2. Drugs Which Affect Impulse Flow in Sympathetic Nerves.- a. Drugs Acting at Sympathetic Ganglia.- b. Drugs Acting in the Central Nervous System.- c. Drugs Acting Indirectly.- D. Dopamine-?-Hydroxylase in Plasma.- I. Assay of Plasma DBH.- II. Origin of Plasma DBH and Relationship to Sympatho-Adrenal Medullary Activity.- III. Variations in Plasma Levels of DBH.- 1. Turnover Rate and Volume of Distribution.- 2. Genetic Control of Plasma DBH Levels.- 3. Developmental Factors.- 4. DBH Levels in Disease States.- a. Sympatho-Adrenal Medullary Tumors.- b. Hypertension.- c. Other Disease States.- d. Experimental Alterations in Plasma DBH.- E. Conclusion.- F. References.- 16 Dopaminergic Neurons: Basic Aspects.- A. Introduction.- B. Synthesis, Storage, Release, Uptake and Metabolism.- I. Synthesis.- II. Storage.- III. Release.- IV. Uptake and Metabolism.- C. Regulation of Dopamine Synthesis and Release.- D. Dopamine Receptors.- E. Adaptive Changes.- F. Interaction of Dopamine and Other Neurons.- I. Extrapyramidal System.- 1. Interaction of Dopamine and Acetylcholine Neurons.- 2. Interaction of Dopamine and GABA Neurons.- 3. Interaction of Dopamine and Substance P Neurons.- 4. Interaction of Dopamine and Enkephalin Neurons.- 5. Clinical Implications.- a. Dopamine-Acetylcholine Neuron Relation.- ?. Enhanced Dopaminergic Transmission-Cholinergic Hypoactivity.- ?. Decreased Dopaminergic Transmission-Cholinergic Hyperactivity.- b. Dopamine-GABA Neuron Relation.- II. Limbic System.- 1. Clinical Implications.- G. References.- 17 Catecholamines and Blood Pressure.- A. Introduction.- B. Morphological Aspects of the Central and Peripheral Nervous System Relevant to Blood Pressure.- C. Central and Peripheral Catecholamines in the Control of Blood Pressure in Animals and Man.- D. Animal Models of Hypertension and Their Relevance to Man.- E. Peripheral and Central Catecholamines in Hypertension in Animals and Man.- I. Experimental Hypertension.- 1. Deoxycorticosterone Salt (DOCA Salt) Hypertension.- 2. Renovascular Hypertension.- 3. Spontaneously Hypertensive Rat (SHR).- 4. Salt-Sensitive Hypertension (Dahl Strain).- 5. Neurogenic Hypertension.- II. Human Hypertension.- 1. Essential Hypertension.- 2. Other Forms of Hypertension.- F. Adrenoceptor Agonists and Antagonists in Blood Pressure Regulation.- I. Drugs Acting on Peripheral ?-Adrenoceptors.- II. Drugs Acting on Central ?-Adrenoceptors.- III. ?-Adrenoceptor Antagonists, Central and Peripheral Actions.- IV. Miscellaneous Drugs Which Illustrate the Role of Catecholamines in Blood Pressure Control.- G. References.- 18 Sympathomimetic Amines, ?-Adrenoceptors and Bronchial Asthma.- A. Introduction.- B. Catecholamines.- I. ?-Adrenoceptor Agonists.- II. Structure Activity Relationship.- III. The Metabolism of ?-Adrenoceptor Agonists.- IV. Clinical Pharmacology.- V. Reports of Death Associated with Sympathomimetic Bronchodilators.- C. Adrenoceptors.- I. The ?-Adrenoceptor.- II. The ?-Adrenoceptor.- III. Consequences of Adrenoceptor Imbalance.- D. References.- 19 Catecholamines Biochemical Genetics.- A. Introduction.- I. Biochemical Genetic Research Strategy.- II. Biochemical Genetic Analytical Techniques.- III. Mechanisms of Gene Effects.- B. Biochemical Genetics of Catecholamine Biosynthesis.- I. Introduction.- II. Tyrosine Hydroxylase (Tyrosine 3-Monooxygenase, EC 1.14.16.2, TH).- 1. Experimental Animal Biochemical Genetics.- a. Adrenal TH.- b. Brain TH.- III. Aromatic L-Amino Acid Decarboxylase (EC 4.1.1.28, AADC).- 1. Experimental Animal Biochemical Genetics.- 2. Human Biochemical Genetics.- IV. Dopamine-?-Hydroxylase (Dopamine- ? -Monooxygenase, EC 1.14.17.1. DBH).- 1. Introduction.- 2. Experimental Animal Biochemical Genetics.- a. Adrenal DBH.- b. Serum DBH.- 3. Human Biochemical Genetics.- V. Phenylethanolamine N-Methyltransferase (Noradrenaline-N-Methyltransferase, EC 2.1.1.28, PNMT).- 1. Introduction.- 2. Experimental Animal Biochemical Genetics.- C. Biochemical Genetics of Catecholamine Metabolism.- I. Introduction.- II. Catechol-O-Methyltransferase (EC 2.1.1.6, COMT).- 1. Introduction.- 2. Experimental Animal Biochemical Genetics.- 3. Human Biochemical Genetics.- III. Monoamine Oxidase (Amine Oxidase [Flavin-containing], EC 1.4.2.4, MAO).- 1. Introduction.- 2. Experimental Animal Biochemical Genetics.- 3. Human Biochemical Genetics.- a. Platelet MAO.- b. Fibroblast MAO.- IV. Other Catecholamine Metabolic Enzymes.- D. Conclusion.- E. References.- 20 The Role of Tyrosine Hydroxylase in the Regulation of Catecholamines Synthesis.- A. Introduction and Enzymology of Tyrosine Hydroxylase.- I. Mechanism for Tyrosine Hydroxylation.- II. Similarities of Tyrosine Hydroxylase to Phenylalanine Hydroxylase.- III. Oxygen Requirements of Tyrosine Hydroxylase.- IV. Inhibition of Tyrosine Hydroxylase by Substrate and Cofactor End-Products.- V. Kinetics of Tyrosine Hydroxylase for Cofactor.- B. Assay of Tyrosine Hydroxylase.- C. Localization of Tyrosine Hydroxylase.- D. Short-Term Regulation of Tyrosine Hydroxylase.- I. The Regulation of Catecholamine Synthesis.- II. Other Possible Allosteric Regulators of Tyrosine Hydroxylase Activity.- III. Purification and Physical Properties of Tyrosine Hydroxylase.- IV. In Vitro Phosphorylation of Tyrosine Hydroxylase.- V. In Situ Phosphorylation of Tyrosine Hydroxylase.- VI. Summary of the Short-Term Regulation of Tyrosine Hydroxylase.- E. Long-Term Regulation of Tyrosine Hydroxylase.- I. Regulation of Tyrosine Hydroxylase Enzyme Levels by Different Environmental Stimuli.- II. Regulation of Tyrosine Hydroxylase mRNA Levels.- F. References.