1 Introduction.- 1.1 Development of Materials and their Characteristics.- 1.2 Fracture and Damage.- 1.3 Rise of Fracture Mechanics and Strengthening and Toughening.- 2 Basic Concepts of Fracture Mechanics.- 2.1 Fracture Toughness.- 2.1.1 General Concepts of Fracture Toughness from an Energy Criterion.- 2.1.2 Linear Elastic Fracture Mechanics in a Crack-tip Stress Field.- 2.1.3 Plastic Zone at Crack-tip.- 2.2 Elastic-Plastic Fracture Mechanics.- 2.3 Measurement of Fracture Toughness.- 2.4 Application of Fracture Toughness.- 3 Principles of Strength and Toughness.- 3.1 Classical Fracture Theory.- 3.2 Microstructure and Fracture Mechanism.- 3.3 Inexpensive Toughness Evaluation Method-Instrumented Charpy Impact Test.- 3.4 Specimen Size Effect and J-Q Theory.- 4 Steels.- 4.1 Solid Phase Transformation in Steels.- 4.1.1 Precipitation of Proeutectiod Ferrite.- 4.1.2 Pearlitic Transformation.- 4.1.3 Bainitic Transformation.- 4.1.4 Martensitic Transformation.- 4.2 Correlations among Strength, Fracture and Microstructures.- 4.3 Strengthening and Toughening of Practical Steels.- 4.3.1 Ferritic-Pearlitic Steel.- 4.3.2 Bainitic and Martensitic Steels.- 4.3.3 Maraging Steel.- 4.3.4 TRIP Steel.- 4.3.5 Dual Phase Steel.- 4.3.6 Controlled Rolling.- 4.4 Degradation in Steels.- 4.5 Strength and Fracture of Carburized Steel.- 5 Ductile Cast Iron.- 5.1 Fracture Mechanism in Ductile Cast Iron.- 5.2 Evaluation of Fracture Toughness.- 5.2.1 Definition of a Crack Initiation Point.- 5.2.2 Ductile-Brittle Transition Behavior.- 5.3 Influence of Microstructure on Fracture Toughness.- 5.3.1 The Effect of Matrix Microstructure.- 5.3.2 Effects of Morphology and Distribution of Graphite.- 5.4 Strengthening and Toughening of Ductile Cast Iron.- 5.4.1 Austempered Ductile Cast Iron.- 5.4.2 Strengthening and Toughening Based on Traditional Matrix Phases.- 5.5 Fatigue Characteristics of Ductile Cast Iron.- 6 Wrought Aluminum Alloys.- 6.1 Aluminum Alloys and their Features at Deformation.- 6.2 Microstructure and the Fracture Mechanism.- 6.2.1 General Relationship between Strength and Fracture in Aluminum Alloys.- 6.2.2 Formation of Voids and Secondary Phase Particles in Aluminum Alloys.- 6.2.3 Growth and Coalescence Processes of Voids.- 6.3 Ductile Fracture Details.- 6.3.1 Classification of Deformation and Fracture Mechanisms for Age Hardening-type Alloys.- 6.3.2 Ductile Fracture Theories.- 6.4 Testing Methods for Fracture Toughness of Aluminum Alloys—R Curves Method.- 6.5 Toughness of Aluminum Alloys and the Metallurgical Factors.- 6.5.1 Al-Li Alloy.- 6.5.2 Other Wrought Alloys.- 7 Cast Aluminum Alloys.- 7.1 Aluminum Alloy Casting and Solidification.- 7.2 Solidification Microstructure and Fracture Toughness.- 7.2.1 Secondary Phase Particle and Fracture.- 7.2.2 Influence of Dendrite Arm Spacing.- 7.2.3 Effects of Gas Content and Impurities.- 7.2.4 Influence of Modification Treatment.- 7.2.5 Influence of Casting Defects.- 7.3 Fatigue Characteristics.- 8 Metal Matrix Composites.- 8.1 Key Points of Composite Materials.- 8.2 General Deformation and Fracture Mode.- 8.2.1 Formation of Microdamage Caused by Deformation.- 8.2.2 Fracture Process.- 8.2.3 Crack Growth Mode under Monotonic Loading.- 8.3 Improvement of Fracture Characteristics by Controlling MMC Microstructure.- 8.3.1 Microstructural Factor of Reinforcement.- 8.3.2 Microstructural Factors About Interfaces.- 8.3.3 Microstructural Factors About the Matrix.- 8.4 Fatigue Fracture Behavior.- 8.4.1 Short Fatigue Crack.- 8.4.2 Long Fatigue Crack.- 9 Titanium Alloys.- 9.1 Mechanical Characteristics of Titanium Alloys.- 9.1.1 Mechanical Properties of Titanium Alloys.- 9.1.2 Classification of Titanium Alloys and their Mechanical Properties.- 9.2 Influence of Microstructure on Fracture Toughness.- 9.2.1 Equiaxed ? Microstructure.- 9.2.2 Acicular ? Microstructure.- 9.2.3 Microstructural Units Controlling Crack Propagation Initiation Toughness.- 9.3 Micromechanism of Crack Initiation and Crack Propagation.- 9.4 Embrittlement and Strengthening of Titanium Alloys by Hydrogen.- 9.4.1 Embrittlement.- 9.4.2 Strengthening.- 9.5 Strain Induced Transformation and Mechanical Properties.- 10 Intermetallic Compounds.- 10.1 Application of Fracture Mechanics Testing.- 10.1.1 Effect of Specimen Size.- 10.1.2 Notched Specimens.- 10.1.3 Detection of Crack Initiation Point.- 10.2 Influence of Alloying.- 10.3 Influence of Microstructure Control.- 10.3.1 Ti3Al-based Alloy.- 10.3.2 TiAl-based Alloys.- 10.3.3 Composite Materials.- 10.4 Environmental Embrittlement.- 10.4.1 Hydrogen Absorption.- 10.4.2 Hydrogen Embrittlement.- 11 Ceramics.- 11.1 Characteristics of Strength and Toughness in Ceramics.- 11.1.1 Linear Elastic Fracture and Non-linear Fracture.- 11.1.2 Influence of Various Material Science and Mechanical Factors on Fracture Toughness.- 11.1.3 Strengthening and Toughening for Ceramics.- 11.2 Evaluation Methods for Toughness.- 11.2.1 Analysis Method of Absorbed Energy by Instrumented Charpy Testing Method.- 11.2.2 Dynamic Fracture Toughness Testing.- 12 Polymers.- 12.1 Characteristics and Deformation Mechanisms of Polymers.- 12.2 Mechanical Properties of Polymers.- 12.2.1 Fracture Toughness.- 12.2.2 Instrumented Charpy Impact Testing.- 12.2.3 Fatigue Crack Propagation Characteristics.- 12.2.4 Usual Fatigue and Impact Fatigue Tests.- SI Units and Conversion Table.