,

Nonlinear mappings of monotone type

Paperback Engels 2011 9789400995468
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The progress in nonlinear functional analysis has allowed the study of many nonlinear problems in mathematical physics. This book provides basic methods and results for the investigation of the special problems in this area. The connection between nonlinear analysis and convex analysis gave rise to the important field of monotone operators from a Banach space into its dual space. These mappings extend the properties of compact operators to the infinite-dimensional case. Generalizations of monotone operators are termed mappings of monotone type. Among these, in the last decade, the pseudo-monotone operators and the mappings of type (M) have provided a more proper tool for solving large classes of nonlinear differential and integral equations. The text dwells upon essentially four interrelated topics: Nonlinear mappings of mono­ tone type, Hammerstein equations, Odd operators and Variational problems. To make the approach easier, we have compiled some basic results on the topological degree and on the Sobolev spaces. In the applications we restrict our discussion to the existence of solutions for nonlinear elliptic equations. The present English editIOn was written starting from the Romanian book "Operatori neliniari" (Nonlinear Mappings) by the first author and his lectures delivered at the Universities of Bucharest and Rome. The improved final form of this book is the result of the joint work of the authors.

Specificaties

ISBN13:9789400995468
Taal:Engels
Bindwijze:paperback
Uitgever:Springer Netherlands
Druk:0

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

I. Background in Functional Analysis.- 1. Topology and measure.- Banach spaces.- Elements of the geometry of Banach spaces.- Continuous mappings.- Vitali’s theorem.- 2. Convex analysis.- Continuity of convex functions.- Separation of convex sets.- Lower semi-continuous functions.- The subdifferential.- Smooth norms.- 3. Related topics and exercises.- Bibliographical comments.- II. Methods of Compactness.- 1. Compact operators.- Linear integral operators.- Integral operators of potential type.- 2. Sobolev spaces.- Mollifiers.- Generalized derivatives.- Imbedding theorems.- Generalities about the trace.- Imbeddings in the case of unbounded domains.- 3. Theory of topological degree.- Degree of a mapping in N-dimensional spaces.- Properties of the degree.- Fixed point theorems.- Topological degree in Banach spaces.- 4. Related topics and exercises.- Bibliographical comments.- III. Nonlinear Mappings of Monotone Type.- 1. Pseudo-monotone mappings.- Mappings of variational calculus type.- The class of pseudomonotone mappings.- Mappings with generalized pseudomonotone property.- 2. Monotone mappings.- Definitions and examples.- Local boundedness and continuity.- Maximal monotone mappings.- Normalized duality map.- Linear maximal monotone mappings.- Surjectivity of coercive mappings.- A maximality criterion.- Subdifferentials of convex functions.- 3. Perturbation of maximal monotone mappings.- The Yosida approximant.- Surjectivity of perturbed mappings.- Maximality of sums.- 4. Noncoercive operators.- Operators of type (S).- Surjectivity of noncoercive mappings.- 5. Mappings of type (M).- Extent of the class.- Surjectivity of mappings of type (M).- 6. Related topics and exercises.- Bibliographical comments.- IV. Hammerstein Equations.- 1. The Nemitskyi operator.- The case Lp(?) with 1 < p < ?.- The case L1(?).- 2. Abstract Hammerstein equations.- Equations with linear compact mappings.- Pseudo-monotonicity methods.- Hilbertean case.- 3. Angle-bounded mappings.- Angle-bounded linear and nonlinear operators.- The splitting of linear maps.- Equations with angle-bounded operators.- An approximation method.- A class of Urysohn equations.- Hammerstein integral equations.- 4. Variational methods.- Banach space case.- Hilbert space case.- 5. Related topics and exercises.- Bibliographical comments.- V. Homotopy Arguments.- 1. Odd mappings.- Infinite-dimensional variant of Borsuk’s theorem.- Perturbations homotopic to odd operators.- 2. Eigenvalue problems for maximal monotone operators.- Mappings with a compact resolvent.- The subdifferential case.- A Fredholm alternative.- 3. Range of sums of monotone mappings.- Condition (*) for nonlinear mappings.- The case (Tu, S?u) ? 0.- 4. Related topics and exercises.- Bibliographical comments.- VI. Variational Problems and Inequalities.- 1. Variational inequalities.- Equivalent formulations of minimum problems.- The penalty method.- Convergence of solutions of variational inequalities.- 2. Variational boundary-value problems.- Generalized divergence equations.- The existence of variational solutions.- Other assumptions.- 3. Strongly nonlinear problems.- Mappings of type (M) with respect to two Banach spaces.- Strongly nonlinear variational problems.- Strongly nonlinear inequalities.- 4. Other methods.- Odd perturbations.- A problem with upper and lower solutions.- Landesman-Lazer theorem.- 5. Boundary-value problems in unbounded domains.- An approach with approximate domains.- Elliptic super-regularization.- 6. Related topics and exercises.- Bibliographical comments.- Suggestions for further study.- References.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Nonlinear mappings of monotone type