,

Relay Tuning of PID Controllers

For Unstable MIMO Processes

Paperback Engels 2019 9789811356711
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book presents comprehensive information on the relay auto-tuning method for unstable systems in process control industries, and introduces a new, refined Ziegler-Nichols method for designing controllers for unstable systems. The relay auto-tuning method is intended to assist graduate students in chemical, electrical, electronics and instrumentation engineering who are engaged in advanced process control. The book’s main focus is on developing a controller tuning method for scalar and multivariable systems, particularly for unstable processes. It proposes a much simpler technique, avoiding the shortcomings of the popular relay-tuning method. The effects of higher-order harmonics are incorporated, owing to the shape of output waveforms. In turn, the book demonstrates the applicability and effectiveness of the Ziegler-Nichols method through simulations on a number of linear and non-linear unstable systems, confirming that it delivers better performance and robust stability in the presence of uncertainty. The proposed method can also be easily implemented across industries with the help of various auto-tuners available on the market. Offering a professional and modern perspective on profitably and efficiently automating controller tuning, the book will be of interest to graduate students, researchers, and industry professionals alike.

Specificaties

ISBN13:9789811356711
Taal:Engels
Bindwijze:paperback
Uitgever:Springer Nature Singapore

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

LIST OF TABLES <p></p> <p>LIST OF FIGURES               </p> <p>ABBREVIATIONS               </p> <p>NOTATIONS       </p> <p>PREFACE              </p> <p>Chapter 1 Introduction </p> <p>1.1.         Scope of process control              </p> 1.2.         Proportional Integral Derivative Control                <p></p> <p>1.3.         Loop tuning       </p> <p>1.4.         Relay feedback Technique    &nbs</p>p;      <p></p> <p>1.5.         Real time applications    </p> <p>1.6.         Conclusion          </p> <p>Chapter 2 Relay feedback control             </p> <p>2.1          Relay control system classification            </p> <p>2.2          Describing function analysis        </p> <p>2.3          Relay auto-tuning  for scalar systems      </p> <p>2.3.1 Modified relay feedback method - Sung et. al. (1995)           </p> <p>2.3.2. Modified Fourier series analysis</p> of process response - Srinivasan & Chidambaram (2004)   <p></p> <p>2.3.3. Use of preload relay - Tan et. al. (2006)      </p> <p>2.3.4. Enhanced process activation method - Je et. al. (2009)       </p> <p>2.3.5. Simulation study </p> 2.4          Relay auto-tuning  of multivariable systems         <p></p> <p>2.4.1.     Pairing criteria   </p> <p>2.4.2.     Condition for limit cycle to occur               </p> <p>2.5.         Relay feedback test for multivariable systems    </p> <p>2.5.1.     Relay auto-tuning of decentralized controllers   </p> <p>2.5.1.1. Palmor et. al. (1994)        </p> <p>2.5.1.2. Zhuang and Atherton (1994)       </p> 2.5.1.3. Campestrini et. al. (2006)              <p></p> <p>2.5.2.     Relay auto-tuning of centralized controller           </p> <p>2.5.2.1. Menani and Koivo (1996c)            </p> <p>2.5.2.2. Wang et. al. (1997)          </p> <p>2.5.2.3. Menani (1999)   </p> <p>2.6.         Design of PID controllers              </p> <p>2.7.         Robustness stability analysis       </p> <p>2.8.         Conclusion        </p>;  <p></p> <p>Chapter 3 Auto Tuning of Unstable SOPTD Systems         </p> <p>3.1          Introduction       </p> <p>3.2          Consideration of higher order harmonics              </p> <p>3.2.1. Problem 1               </p> <p>3.2.2. Problem 2               </p> 3.2.3. Problem 3               <p></p> <p>3.3          Measure of robust performance              </p> <p>3.4          Design Procedure&nb</p>sp;           <p></p> <p>3.4.1 Tuning rule               </p> <p>3.4.2 Simple method to calculate Kc,min                </p> <p>3.5          Simulation studies           </p> 3.5.1 Example 1 <p></p> <p>3.5.1.1 Effect of measurement noise      </p> <p>3.5.2 Example 2 </p> <p>3.5.3 Example 3 </p> <p>3.5.4 Example 4: Unstable Non-linear Bioreactor               </p> <p>3.5.4.1 Effect of measurement noise      </p> <p>3.6          Conclusions        </p> <p>Chapter 4 Decentralised PID Controllers for stabl</p>e system            <p></p> <p>4.1          Introduction       </p> 4.2          Design procedure            <p></p> <p>4.3          Simulation study on stable systems         </p> <p>4.3.1 Example 1                 </p> <p>4.3.1.1 Effect of measurement noise      </p> <p>4.3.2. Example 2               </p> <p>4.3.3. Example 3               </p> 4.3.4. Example 4               <p></p> <p>4.4          Conclusions        </p> <p>Chapter 5 Decentralised PID Controllers for unstable system       </p> <p>5.1.         Introduction       </p> <p>5.2.         Design procedure            </p> <p>5.3.         Simulation study on unstable systems    </p> <p>5.3.1 Example 1                 </p> 5.3.1.1 Calculation of Kc,min        <p></p> <p>5.3.1.2.Calculation of Kc,max      </p> <p>5.3.2.  Example 2              </p> <p>5.3.2.1 C</p>alculation of Kc,min        <p></p> <p>5.3.2.2.Calculation of Kc,max      </p> <p>5.3.3. Example 3               </p> <p>5.3.3.1. Calculation of Kc,min      </p> <p>5.3.3.2.Calculation of Kc,max      </p> <p>5.4.         Conclusion          </p> <p>Chapter 6 Centralised PID Controllers for unstable systems          </p> <p>6.1          Introduction       </p> <p>6.2          Controller design method            </p> <p>6.3          Robustness analysis  &nb</p>sp;     <p></p> <p>6.4          Simulation studies on unstable systems                </p> <p>6.3.1 Example 1 </p> <p>6.3.2 Example 2 </p> <p>6.5. Conclusion  </p> <p>Chapter 7 Refined Ziegler-Nichols method for unstable SISO systems     </p> <p>7.1. Introduction              </p> <p>7.2. Controller design method    </p> <p>7.3. Simulation study      </p> <p>7.3.1. Example 1               </p> <p>7.3.2. Example 2               </p> <p>7.3.3. Example 3               </p> 7.3.4. Example 4               <p></p> <p>7.3.5. Example 5               </p> <p>7.4. Improved relay tuning method         </p> <p>7.5. Comparison with recent methods    </p> <p>7.6. Conclusion  </p> <p>Chapter 8 Tuning rules for PID controllers for unstable systems  </p> <p>8.1. Controller design method for unstable FOPTD system            </p> <p>8.1.1 Example 1 </p> <p>8.2. Controller design method for unstable system based on ultimate values       </p> 8.2.1 Example 1 <p></p> <p>8.2.2 Example 2 </p> <p>8.3 Conclusions </p> <p>Chapter 9  Auto tuning of Decentralised unstable system with refined Z-N method          </p> <p>9.1.  Introduction     &n</p>bsp;       <p></p> <p>9.2.         Controller design            </p> <p>9.3.         Simulation studies           </p> <p>9.3.1. Example 1               </p> 9.3.2. Example 2               <p></p> <p>9.4.         Conclusions        </p> <p>APPENDIX           </p> <p>REFERENCES       </p> <p>INDEX</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Relay Tuning of PID Controllers