Time Series Analysis for the State-Space Model with R/Stan

Gebonden Engels 2021 9789811607103
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader’s analytical capability.  

Specificaties

ISBN13:9789811607103
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer Nature Singapore

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<div>Introduction.- Fundamental of probability and statistics.- Fundamentals of handling time series data with R.-&nbsp;Quick tour of time series analysis.-&nbsp;State-space model.-&nbsp;State estimation in the state-space model.-&nbsp;Batch solution for linear Gaussian state-space model.-&nbsp;Sequential solution for linear Gaussian state-space model.-&nbsp;Introduction and analysis examples of a well-known&nbsp;component model.-&nbsp;Batch solution for general state-space model.-&nbsp;Sequential solution for general state-space model.-&nbsp;Example of applied analysis in general state-space model.</div><div><br></div>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Time Series Analysis for the State-Space Model with R/Stan