Magnetic Resonators

Feedback with Magnetic Field and Magnetic Cavity

Paperback Engels 2022 9789811961755
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The phase-locking of multiple spin-torque nano oscillators(STNOs) is considered the primary vehicle to achieve sufficient signal quality for applications. This book highlights the resonator's design and its need for feedback for phase locking of STNOs. STNOs can act as sources of tunable microwaves after being phase-locked together. External feedback from a coplanar waveguide placed above an STNO helps ensures coherent single domain oscillations. STNOs placed within magnonic crystal cavities also demonstrate coherent oscillations. Arrays of such cavities provide a route to scale power levels from such nano-oscillators. The book presents numerical and micromagnetics to validate the design.  

Specificaties

ISBN13:9789811961755
Taal:Engels
Bindwijze:paperback
Uitgever:Springer Nature Singapore

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>1 - Introduction</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1 1.1 Magnonic devices </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 1 1.1.1 Unconventional Computing &nbsp;</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3 1.1.2 Hybrid magnonics and Magnon spintronics </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 4 1.1.3 STNO configurations </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 6 1.1.4 STNO device principle </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8 1.1.5 Mutual synchronization of STNOs </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 8 1.2 Landau - Lifshitz - Gilbert - Slonczewski equation </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 94 1.2.1 Numerical Methods</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 10 1.2.2 Finite Difference and Finite Element method</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 14 Summary </p>

<p>&nbsp;</p>

<p>2- Analytical model for a magnonic ring resonator </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.1 Geometry and analysis</p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.2 Dispersion relation of curved magnonic waveguide <p></p>

&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.3 Validations <p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 2.4 Modes in a magnonic ring</p>

<p>&nbsp;</p>

<p>3 - Magnonic spectra in 2D antidot magnonic crystals with ring </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.1 Plane wave method </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.1.1 Convergence &nbsp;</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.2 Eigenmodes </p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.3 Micromagnetic simulations &nbsp;</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 3.3.1 Magnonic spectra &nbsp;</p>

<p>3.3.2 Antidot magnonic crystal waveguide with linear defect</p>

<p>&nbsp;</p>

<p>&nbsp;</p>

4 – Magnetic resonators with magnetic field feedback <p></p>

<p>&nbsp;</p>

<p>4. 1 Introduction</p>

<p>&nbsp;</p>

<p>4. 1 Problem statement</p>

<p>&nbsp;&nbsp; 4. 2 Micromagnetic simulation without magnetic field feedback </p>

<p>&nbsp;&nbsp; 4.3 Free layer model &nbsp;</p>

<p>&nbsp;&nbsp;&nbsp; 4.4 Free layer Hysteresis loops </p>

<p>4.5 Ferromagnetic resonance frequency versus applied field </p>

<p>4.6 &nbsp;FMR versus applied field for different in plane and out of plane anisotropy FMR versus applied field for different out of plane anisotropy</p>

<p>4.7 Current dependence on resonance frequency </p>

<p>4.8&nbsp; Spintronic oscillators with magnetic field feedback</p>

<p>4.9 Spin wave dynamics with magnetic field feedback </p>

<p>4.10 Spin wave dynamics at 300 K </p>

<p>4.11 Linewidth (Without magnetic field feedback) </p>

<p>4.4 Linewidth (with magnetic field feedback) </p>

4.5 Spin wave spectra with different delay <p></p>

<p>&nbsp;</p>

<p>5 – Magnetic resonators magnetic cavity feedback</p>

&nbsp;<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp; 5.1- I. Introduction</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp; 5.1.2. Micromagnetic Simulations</p>

&nbsp;&nbsp;&nbsp;&nbsp; 5.1.3 Method of Calculation<p></p>

<p>&nbsp;&nbsp;&nbsp;&nbsp; 5.1.4 Band structure of antidot MC</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp; 5.1.5 Spin wave injection on Py film using an array of nano contacts</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1.6&nbsp; Fabry Perot model</p>

<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 5.1.7&nbsp; Quality Factor Calculation</p>

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Magnetic Resonators