Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20
VOORDEEL - 10% korting
, ,

Introductory Mathematical Analysis

for Business, Economics, and the Life and Social Sciences

Gebonden Engels 2018 9780134141107
Laatste exemplaar! Op=Op!
Op voorraad | Op werkdagen voor 21:00 uur besteld, volgende dag in huis
81,39
60,95
VOORDEEL - 10% korting

Samenvatting

This book is ideal for one- or two-semester or two- or three-quarter courses covering topics in college algebra, finite mathematics, and calculus for students in business, economics, and the life and social sciences.

Haeussler, Paul, and Wood establish a strong algebraic foundation that sets this text apart from other applied mathematics texts, paving the way for students to solve real-world problems that use calculus. Emphasis on developing algebraic skills is extended to the exercises—including both drill problems and applications. The authors work through examples and explanations with a blend of rigor and accessibility.

In addition, they have refined the flow, transitions, organization, and portioning of the content over many editions to optimize manageability for teachers and learning for students. The table of contents covers a wide range of topics efficiently, enabling instructors to tailor their courses to meet student needs.

Specificaties

ISBN13:9780134141107
Trefwoorden:analysetechnieken
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:782
Druk:14
Verschijningsdatum:20-4-2018

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Geef uw waardering

Zeer goed Goed Voldoende Matig Slecht

Inhoudsopgave

Preface

Part I: College Algebra

CHAPTER 0 Review of Algebra
0.1 Sets of Real Numbers
0.2 Some Properties of Real Numbers
0.3 Exponents and Radicals
0.4 Operations with Algebraic Expressions
0.5 Factoring
0.6 Fractions
0.7 Equations, in Particular Linear Equations
0.8 Quadratic Equations
Chapter 0 Review

CHAPTER 1 Applications and More Algebra
1.1 Applications of Equations
1.2 Linear Inequalities
1.3 Applications of Inequalities
1.4 Absolute Value
1.5 Summation Notation
1.6 Sequences
Chapter 1 Review

CHAPTER 2 Functions and Graphs
2.1 Functions
2.2 Special Functions
2.3 Combinations of Functions
2.4 Inverse Functions
2.5 Graphs in Rectangular Coordinates
2.6 Symmetry
2.7 Translations and Reflections
2.8 Functions of Several Variables
Chapter 2 Review

CHAPTER 3 Lines, Parabolas, and Systems
3.1 Lines
3.2 Applications and Linear Functions
3.3 Quadratic Functions
3.4 Systems of Linear Equations
3.5 Nonlinear Systems
3.6 Applications of Systems of Equations
Chapter 3 Review

CHAPTER 4 Exponential and Logarithmic Functions
4.1 Exponential Functions
4.2 Logarithmic Functions
4.3 Properties of Logarithms
4.4 Logarithmic and Exponential Equations
Chapter 4 Review

Part II: Finite Mathematics

CHAPTER 5 Mathematics of Finance
5.1 Compound Interest
5.2 Present Value
5.3 Interest Compounded Continuously
5.4 Annuities
5.5 Amortization of Loans
5.6 Perpetuities
Chapter 5 Review

CHAPTER 6 Matrix Algebra
6.1 Matrices
6.2 Matrix Addition and Scalar Multiplication
6.3 Matrix Multiplication
6.4 Solving Systems by Reducing Matrices
6.5 Solving Systems by Reducing Matrices (continued)
6.6 Inverses
6.7 Leontief's Input--Output Analysis
Chapter 6 Review

CHAPTER 7 Linear Programming
7.1 Linear Inequalities in Two Variables
7.2 Linear Programming
7.3 The Simplex Method
7.4 Artificial Variables
7.5 Minimization
7.6 The Dual
Chapter 7 Review

CHAPTER 8 Introduction to Probability and Statistics
8.1 Basic Counting Principle and Permutations
8.2 Combinations and Other Counting Principles
8.3 Sample Spaces and Events
8.4 Probability
8.5 Conditional Probability and Stochastic Processes
8.6 Independent Events
8.7 Bayes' Formula
Chapter 8 Review

CHAPTER 9 Additional Topics in Probability
9.1 Discrete Random Variables and Expected Value
9.2 The Binomial Distribution
9.3 Markov Chains
Chapter 9 Review

PART III: Calculus

CHAPTER 10 Limits and Continuity
10.1 Limits
10.2 Limits (Continued)
10.3 Continuity
10.4 Continuity Applied to Inequalities
Chapter 10 Review

CHAPTER 11 Differentiation
11.1 The Derivative
11.2 Rules for Differentiation
11.3 The Derivative as a Rate of Change
11.4 The Product Rule and the Quotient Rule
11.5 The Chain Rule
Chapter 11 Review

CHAPTER 12 Additional Differentiation Topics
12.1 Derivatives of Logarithmic Functions
12.2 Derivatives of Exponential Functions
12.3 Elasticity of Demand
12.4 Implicit Differentiation
12.5 Logarithmic Differentiation
12.6 Newton's Method
12.7 Higher-Order Derivatives
Chapter 12 Review

CHAPTER 13 Curve Sketching
13.1 Relative Extrema
13.2 Absolute Extrema on a Closed Interval
13.3 Concavity
13.4 The Second-Derivative Test
13.5 Asymptotes
13.6 Applied Maxima and Minima
Chapter 13 Review

CHAPTER 14 Integration
14.1 Differentials
14.2 The Indefinite Integral
14.3 Integration with Initial Conditions
14.4 More Integration Formulas
14.5 Techniques of Integration
14.6 The Definite Integral
14.7 The Fundamental Theorem of Calculus
Chapter 14 Review

CHAPTER 15 Applications of Integration
15.1 Integration by Tables
15.2 Approximate Integration
15.3 Area Between Curves
15.4 Consumers' and Producers' Surplus
15.5 Average Value of a Function
15.6 Differential Equations
15.7 More Applications of Differential Equations
15.8 Improper Integrals
Chapter 15 Review

CHAPTER 16 Continuous Random Variables
16.1 Continuous Random Variables
16.2 The Normal Distribution
16.3 The Normal Approximation to the Binomial Distribution
Chapter 16 Review

CHAPTER 17 Multivariable Calculus
17.1 Partial Derivatives
17.2 Applications of Partial Derivatives
17.3 Higher-Order Partial Derivatives
17.4 Maxima and Minima for Functions of Two Variables
17.5 Lagrange Multipliers
17.6 Multiple Integrals
Chapter 17 Review

APPENDIX A Compound Interest Tables
APPENDIX B Table of Selected Integrals
APPENDIX C Areas Under the Standard Normal Curve

Managementboek TOP 5

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Introductory Mathematical Analysis