Pattern Recognition and Machine Learning
Gebonden Engels 2011 1e druk 9780387310732Samenvatting
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning.
No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Specificaties
Lezersrecensies
Inhoudsopgave
-Linear Models for Regression
-Linear Models for Classification
-Neural Networks
-Kernel Methods
-Sparse Kernel Machines
-Graphical Models
-Mixture Models and EM
-Approximate Inference
-Sampling Methods
-Continuous Latent Variables
-Sequential Data
-Combining Models
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan