Op werkdagen voor 23:00 besteld, morgen in huis Gratis verzending vanaf €20
,

Mathematical Foundations of Infinite-Dimensional Statistical Models

Gebonden Engels 2015 9781107043169
Verkooppositie 5849
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.

Specificaties

ISBN13:9781107043169
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:720
Verschijningsdatum:18-11-2015

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Geef uw waardering

Zeer goed Goed Voldoende Matig Slecht

Inhoudsopgave

1. Nonparametric statistical models; 2. Gaussian processes; 3. Empirical processes; 4. Function spaces and approximation theory; 5. Linear nonparametric estimators; 6. The minimax paradigm; 7. Likelihood-based procedures; 8. Adaptive inference.

Alle 100 bestsellers

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Mathematical Foundations of Infinite-Dimensional Statistical Models