,

Information and Recommender Systems

Paperback Engels 2015 9781848217546
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Information is an element of knowledge that can be stored, processed or transmitted. It is linked to concepts of communication, data, knowledge or representation.  In a context of steady increase in the mass of information it is difficult to know what information to look for and where to find them. Computer techniques exist to facilitate this research and allow relevant information extraction.  Recommendation systems introduced the notions inherent to the recommendation, based, inter alia, information search, filtering, machine learning, collaborative approaches. It also deals with the assessment of such systems and has various applications.

Specificaties

ISBN13:9781848217546
Taal:Engels
Bindwijze:paperback
Aantal pagina's:96

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Introduction  vii
<p>Chapter 1. A Few Important Details Before We Begin&nbsp; 1</p>
<p>1.1. Information systems&nbsp; 1</p>
<p>1.2. Decision support systems&nbsp; 2</p>
<p>1.3. Recommender systems&nbsp; 3</p>
<p>1.4. Comparisons 4</p>
<p>1.5. Recommendation versus personalization 5</p>
<p>1.5.1. Recommendation 5</p>
<p>1.5.2. Personalization 6</p>
<p>Chapter 2. Recommender Systems&nbsp; 7</p>
<p>2.1. Introduction&nbsp; 8</p>
<p>2.2. Classification of recommender systems 9</p>
<p>2.2.1. Classification by score estimation method 9</p>
<p>2.2.2. Classification by data exploitation&nbsp; 10</p>
<p>2.2.3. Classification by objective&nbsp; 11</p>
<p>2.3. User profiles&nbsp; 11</p>
<p>2.4. Data mining&nbsp; 12</p>
<p>2.5. Content–based approaches 14</p>
<p>2.6. Collaborative filtering approaches 17</p>
<p>2.7. Knowledge–based approaches 20</p>
<p>2.8. Hybrid approaches 23</p>
<p>2.9. Other approaches&nbsp; 25</p>
<p>Chapter 3. Key Concepts, Useful Measures and Techniques 29</p>
<p>3.1. Vector space model&nbsp; 31</p>
<p>3.2. Similarity measures&nbsp; 31</p>
<p>3.2.1. Cosine similarity 31</p>
<p>3.2.2. Pearson correlation coefficient 32</p>
<p>3.2.3. Euclidean distance&nbsp; 33</p>
<p>3.2.4. Dice index&nbsp; 33</p>
<p>3.3. Dimensionality reduction&nbsp; 34</p>
<p>3.3.1. Principal component analysis&nbsp; 34</p>
<p>3.3.2. Singular value decomposition&nbsp; 35</p>
<p>3.3.3. Latent semantic analysis&nbsp; 36</p>
<p>3.4. Classification/clustering 36</p>
<p>3.4.1. Classification&nbsp; 36</p>
<p>3.4.2. Clustering 37</p>
<p>3.5. Other techniques&nbsp; 39</p>
<p>3.5.1. Term frequency–inverse document frequency (TF–IDF)&nbsp; 39</p>
<p>3.5.2. Association rules 40</p>
<p>3.6. Comparisons 41</p>
<p>Chapter 4. Practical Implementations&nbsp; 43</p>
<p>4.1. Commercial applications&nbsp; 43</p>
<p>4.1.1. Amazon.com&nbsp; 43</p>
<p>4.1.2. Netflix 45</p>
<p>4.2. Databases&nbsp; 46</p>
<p>4.3. Collaborative environments&nbsp; 48</p>
<p>4.4. Smart cities&nbsp; 49</p>
<p>4.5. Early warning systems&nbsp; 54</p>
<p>Chapter 5. Evaluating the Quality of Recommender Systems 57</p>
<p>5.1. Data sets, sparsity and errors 57</p>
<p>5.2. Measures&nbsp; 59</p>
<p>5.2.1. Accuracy 59</p>
<p>5.2.2. Other measures 63</p>
<p>Conclusion 65</p>
<p>Bibliography&nbsp; 67</p>
<p>Index&nbsp; 77</p>

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Information and Recommender Systems